当前位置:   article > 正文

关于卷积过程中通道数如何变化问题_rgb图像卷积后64同道

rgb图像卷积后64同道

        以RGB图像为例。
        一个12*12的像素图,对其进行5*5的卷积,最后得到一个8*8【计算过程:(12-5)/1+1=8】的像素图。

        RGB图像有3个通道(12*12*3),所以卷积核也要有3个通道(5*5*3),对像素图进行卷积后得到的结果是8*8*1而不是8*8*3的图像。最后像素图的深度(输出图像的信道数)取决于卷积核的个数。

        如果要得到8*8*256的结果,应该这样做:用256个5*5*3的卷积核来卷12*12*3的像素图。最后得到的结果进行堆叠就是8*8*256的图像。(256个5*5*3的卷积核可以想象成它的输入信道数为3,而输出信道数为256,两者互不影响。)

        注:通道数就是使用的卷积核的个数。就像上面解释的一样,假如输入的图是RGB3通道的,如果我们只卷积一次,就只会输出一个值,由于输入图片是 3 通道的,输出通道反而减少了,为了保留特征,会进行多次卷积操作,比如进行 256 次卷积操作就可以得到一个 256 通道的输出了,然后输出的通道数就叫做feature map。

        附卷积、池化操作的计算公式

假设输入维度为 H1×W1×C1,输出为 H2×W2×C2,则有

        H2 = (H1-F+2P)/ S+1

        W2 = (W1-F+2P)/ S+1

        C2 = k

        这里 F:filter大小;P:边界填充,为0或1;S:步长;k:filter个数

参考文章:卷积过程中关于通道数的问题_赵 XiaoQin的博客-CSDN博客_卷积通道数

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/笔触狂放9/article/detail/786791
推荐阅读
相关标签
  

闽ICP备14008679号