赞
踩
本文中,Google 团队提出了一种文本语音合成(text to speech)神经系统,能通过少量样本学习到多个不同说话者(speaker)的语音特征,并合成他们的讲话音频。此外,对于训练时网络没有接触过的说话者,也能在不重新训练的情况下,仅通过未知说话者数秒的音频来合成其讲话音频,即网络具有零样本学习能力。
目前,已经有人将该论文实现并在 GitHub 上发布了开源项目,目前该项目标星超 9.5k,fork 数是 1.5k。
AI 换声 GitHub代码:
传统的自然语音合成系统在训练时需要大量的高质量样本,通常对每个说话者,都需要成百上千分钟的训练数据,这使得模型通常不具有普适性,不能大规模应用到复杂环境(有许多不同的说话者)。而这些网络都是将语音建模和语音合成两个过程混合在一起。本文工作首先将这两个过程分开,通过第一个语音特征编码网络(encoder)建模说话者的语音特征,接着通过第二个高质量的TTS网络完成特征到语音的转换。
两个网络可以分别在不同的数据集上训练,因此对训练数据的需求量大大降低。对于特征编码网络
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。