当前位置:   article > 正文

JVM调优总结 -Xms -Xmx -Xmn -Xss

JVM调优总结 -Xms -Xmx -Xmn -Xss

1 JVM常见参数

JVM涉及的空间:

  • 堆:包括年轻代与老年代+字符串常量池,年轻代由一个Eden与两个Survivor区。
  • 方法区:持久代与元空间都是方法区的实现,JDK1.8改为元空间。 

JVM参数

  • -Xms:初始堆内存大小,设定程序启动时占用内存大小,默认物理内存1/64   -Xms = -XX:InitialHeapSiz
  • -Xmx:最大堆内存,设定程序运行期间最大可占用的内存大小。如果程序运行需要占用更多的内存,超出了这个设置值,就会抛出OutOfMemory异常,默认物理内存1/4,-Xmx = -XX:MaxHeapSize。 
  • -Xss:设置单个线程栈大小,一般默认512~1024kb。单个线程栈大小跟操作系统和JDK版本都有关系,-Xss = -XX:ThreadStackSize
  • -Xmn:设置年轻代大小。整个堆大小=年轻代大小 + 年老代大小 + 常量池。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8
  • -XX:MetaspaceSize :元空间大小,元空间本质跟永久代类似,都是对JVM规范中方法区的实现。不过元空间与永久代最大的区别在于:元空间并不在虚拟机中,而是使用本地内存,由操作系统支配。因此,元空间大小仅受本地内存限制。
  • -XX:+PrintGCDetails :打印GC详细日志信息
  • -XX:SurvivorRatio:幸存者比例设置,设置年轻代中Eden区与Survivor区的大小比值。设置为8,则两个Survivor区与一个Eden区的比值为2:8,一个Survivor区占整个年轻代的1/10
  • -XX:NewRatio:新生代比例设置(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为1,则年轻代与年老代所占比值为1:1,年轻代占整个堆栈的1/2。
  • -XX:MaxTenuringThreshold:进入老年代阈值设置
  • -XX:PermSize=128m:持久代内存初始值分配128M;      
  • -XX:MaxPermSize=512m:设置持久代最大为512m

2 -Xms/-Xmx/-Xmn/-Xss详解

Xms 是指设定程序启动时占用内存大小。一般来讲,设置大点,程序会启动的快一点,但是也可能会导致机器暂时间变慢。

Xmx 是指设定程序运行期间最大可占用的内存大小。如果程序运行需要占用更多的内存,超出了这个设置值,就会抛出OutOfMemory异常。

Xss 是指设定每个线程的堆栈大小。这个就要依据业务程序,看一个线程大约需要占用多少内存,可能会有多少线程同时运行等。

以上三个参数的设置都是默认以Byte为单位的,也可以在数字后面添加[k/K]或者[m/M]来表示KB或者MB。而且,超过机器本身的内存大小也是不可以的,否则就等着机器变慢而不是程序变慢了。

  • -Xms为jvm启动时分配的内存,比如-Xms200m,表示分配200M
  • -Xmx为jvm运行过程中分配的最大内存,比如-Xms500m,表示jvm进程最多只能够占用500M内存
  • -Xss为jvm启动的每个线程分配的内存大小,默认JDK1.4中是256K,JDK1.5+中是1M

内存与线程数的关系:

Total Memory-Xms-Xmx-XssSpare MemoryJDKThread Count
1024M256M256M256K768M1.43072
1024M256M256M256K768M1.5768

上面的表格只是大致的估计了下在特定内存条件下可以在java中创建的最大线程数。随着-Xmx的加大,空闲的内存数就更少,那么可以创建的线程也就更少,同时在JDK1.4和1.5版本不同下,可创建的线程数也会根据每个线程的内存大小不同而不同。

接下来聊下java.lang.Runtime类中的 freeMemory(), totalMemory(), maxMemory()几个方法:

  • maxMemory()这个方法返回的是java虚拟机(这个进程)能构从操作系统那里挖到的最大的内存,以字节为单位,如果在运行java程序的时候,没有添加-Xmx参数,那么就是64兆,也就是说maxMemory()返回的大约是64*1024*1024字节,这是java虚拟机默认情况下能从操作系统那里挖到的最大的内存。如果添加了-Xmx参数,将以这个参数后面的值为准,例如java -cp you_classpath -Xmx512m your_class,那么最大内存就是512*1024*1024字节。
  • totalMemory()这个方法返回的是java虚拟机现在已经从操作系统那里挖过来的内存大小,也就是java虚拟机这个进程当时所占用的所有内存。如果在运行java的时候没有添加-Xms参数,那么,在java程序运行的过程的,内存总是慢慢的从操作系统那里挖的,基本上是用多少挖多少,直到挖到maxMemory()为止,所以totalMemory()是慢慢增大的。如果用了-Xms参数,程序在启动的时候就会无条件的从操作系统中挖 -Xms后面定义的内存数,然后在这些内存用的差不多的时候,再去挖。
  •  freeMemory()是什么呢,刚才讲到如果在运行java的时候没有添加-Xms参数,那么,在java程序运行的过程的,内存总是慢慢的从操作系统那里挖的,基本上是用多少挖多少,但是java虚拟机100%的情况下是会稍微多挖一点的,这些挖过来而又没有用上的内存,实际上就是 freeMemory(),所以freeMemory()的值一般情况下都是很小的,但是如果你在运行java程序的时候使用了-Xms,这个时候因为程序在启动的时候就会无条件的从操作系统中挖-Xms后面定义的内存数,这个时候,挖过来的内存可能大部分没用上,所以这个时候freeMemory()可能会有些大。

2.1 堆大小设置

JVM 中最大堆大小有三方面限制:

  • 相关操作系统的数据模型(32-bit还是64-bit)限制;
  • 系统的可用虚拟内存限制;
  • 系统的可用物理内存限制。

不同位数的操作系统可设置JVM最大堆大小:

  • 32位系统下,一般限制在1.5G~2G;
  • 64为操作系统对内存无限制。

典型设置:
1 )java -Xmx3550m -Xms3550m -Xmn2g -Xss128k

  • - Xmx3550m :设置JVM最大可用内存为3550M。
  • -Xms3550m :设置JVM初始内存为3550m,-Xms可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。
  • -Xmn2g :设置年轻代大小为2G。整个堆大小=年轻代大小 + 年老代大小 + 持久代大小 。持久代一般固定大小为64m,所以增大年轻代后,将会减小年老代大小。此值对系统性能影响较大,Sun官方推荐配置为整个堆的3/8。
  • -Xss128k :设置每个线程的堆栈大小。JDK5.0以后每个线程堆栈大小为1M,以前每个线程堆栈大小为256K。更具应用的线程所需内存大小进行调整。在相同物理内存下,减小这个值能生成更多的线程。但是操作系统对一个进程内的线程数还是有限制的,不能无限生成,经验值在3000~5000左右。

2)java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0

  • -XX:NewRatio=4 :设置年轻代(包括Eden和两个Survivor区)与年老代的比值(除去持久代)。设置为4,则年轻代与年老代所占比值为1:4,年轻代占整个堆栈的1/5
  • -XX:SurvivorRatio=4 :设置年轻代中Eden区与Survivor区的大小比值。设置为4,则两个Survivor区与一个Eden区的比值为2:4,一个Survivor区占整个年轻代的1/6
  • -XX:MaxPermSize=16m :设置持久代大小为16m。
  • -XX:MaxTenuringThreshold=0 :设置垃圾最大年龄。如果设置为0的话,则年轻代对象不经过Survivor区,直接进入年老代 。对于年老代比较多的应用,可以提高效率。如果将此值设置为一个较大值,则年轻代对象会在Survivor区进行多次复制,这样可以增加对象再年轻代的存活时间 ,增加在年轻代即被回收的概论。

2.2 回收器选择

JVM给了三种选择:

  • 串行收集器
  • 并行收集器
  • 并发收集器 

但是串行收集器只适用于小数据量的情况,所以这里的选择主要针对并行收集器和并发收集器。

默认情况下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在启动时加入相应参数。JDK5.0以后,JVM会根据当前系统进行判断。

2.2.1 吞吐量优先的并行收集器

如上文所述,并行收集器主要以到达一定的吞吐量为目标,适用于科学技术和后台处理等。
典型配置 :
1)java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20

  • -XX:+UseParallelGC :选择垃圾收集器为并行收集器。 此配置仅对年轻代有效。即上述配置下,年轻代使用并发收集,而年老代仍旧使用串行收集。
  • -XX:ParallelGCThreads=20 :配置并行收集器的线程数,即:同时多少个线程一起进行垃圾回收。此值最好配置与处理器数目相等。

2)java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC

  • -XX:+UseParallelOldGC :配置年老代垃圾收集方式为并行收集。JDK6.0支持对年老代并行收集。

3)java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100

  • -XX:MaxGCPauseMillis=100 : 设置每次年轻代垃圾回收的最长时间,如果无法满足此时间,JVM会自动调整年轻代大小,以满足此值。

4)java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy

  • -XX:+UseAdaptiveSizePolicy :设置此选项后,并行收集器会自动选择年轻代区大小和相应的Survivor区比例,以达到目标系统规定的最低相应时间或者收集频率等,此值建议使用并行收集器时,一直打开。

2.2.2 响应时间优先的并发收集器

如上文所述,并发收集器主要是保证系统的响应时间,减少垃圾收集时的停顿时间。适用于应用服务器、电信领域等。

典型配置 :

1)java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC

  • -XX:+UseConcMarkSweepGC :设置年老代为并发收集。测试中配置这个以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此时年轻代大小最好用-Xmn设置。
  • -XX:+UseParNewGC :设置年轻代为并行收集。可与CMS收集同时使用。JDK5.0以上,JVM会根据系统配置自行设置,所以无需再设置此值。

2)java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection

  • -XX:CMSFullGCsBeforeCompaction :由于并发收集器不对内存空间进行压缩、整理,所以运行一段时间以后会产生“碎片”,使得运行效率降低。此值设置运行多少次GC以后对内存空间进行压缩、整理。
  • -XX:+UseCMSCompactAtFullCollection :打开对年老代的压缩。可能会影响性能,但是可以消除碎片

2.2.3 辅助信息

JVM提供了大量命令行参数,打印信息,供调试使用。主要有以下一些:

1)-XX:+PrintGC
输出形式:

  1. [GC 118250K->113543K(130112K), 0.0094143 secs]
  2. [Full GC 121376K->10414K(130112K), 0.0650971 secs]

2)-XX:+PrintGCDetails
输出形式:

  1. [GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
  2. [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]

-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可与上面两个混合使用。
输出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]

  • -XX:+PrintGCApplicationConcurrentTime: 打印每次垃圾回收前,程序未中断的执行时间。可与上面混合使用。
    输出形式:Application time: 0.5291524 seconds
  • -XX:+PrintGCApplicationStoppedTime :打印垃圾回收期间程序暂停的时间。可与上面混合使用。
    输出形式:Total time for which application threads were stopped: 0.0468229 seconds
  • -XX:PrintHeapAtGC :打印GC前后的详细堆栈信息
    输出形式:
    34.702: [GC {Heap before gc invocations=7:
    def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)
    eden space 49152K, 99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)
    from space 6144K, 55% used [0x221d0000, 0x22527e10, 0x227d0000)
    to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)
    tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)
    the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)
    compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
       the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
        ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
        rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
    34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:
    def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)
    eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)
    from space 6144K, 55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)
    to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)
    tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)
    the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)
    compacting perm gen total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)
       the space 8192K, 35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)
        ro space 8192K, 66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)
        rw space 12288K, 46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)
    }
    , 0.0757599 secs]

  • -Xloggc:filename :与上面几个配合使用,把相关日志信息记录到文件以便分析。

2.2.4 常见配置汇总

2.2.4.1 堆设置
  • -Xms :初始堆大小
  • -Xmx :最大堆大小
  • -XX:NewSize=n :设置年轻代大小
  • -XX:NewRatio=n: 设置年轻代和年老代的比值。如:为3,表示年轻代与年老代比值为1:3,年轻代占整个年轻代年老代和的1/4
  • -XX:SurvivorRatio=n :年轻代中Eden区与两个Survivor区的比值。注意Survivor区有两个。如:3,表示Eden:Survivor=3:2,一个Survivor区占整个年轻代的1/5
  • -XX:MaxPermSize=n :设置持久代大小
2.2.4.2 收集器设置
  • -XX:+UseSerialGC :设置串行收集器
  • -XX:+UseParallelGC :设置并行收集器
  • -XX:+UseParalledlOldGC :设置并行年老代收集器
  • -XX:+UseConcMarkSweepGC :设置并发收集器
2.2.4.3 垃圾回收统计信息
  • -XX:+PrintGC
  • -XX:+PrintGCDetails
  • -XX:+PrintGCTimeStamps
  • -Xloggc:filename
2.2.4.4 并行收集器设置
  • -XX:ParallelGCThreads=n :设置并行收集器收集时使用的CPU数。并行收集线程数。
  • -XX:MaxGCPauseMillis=n :设置并行收集最大暂停时间
  • -XX:GCTimeRatio=n :设置垃圾回收时间占程序运行时间的百分比。公式为1/(1+n)
2.2.4.5 并发收集器设置
  • -XX:+CMSIncrementalMode :设置为增量模式。适用于单CPU情况。
  • -XX:ParallelGCThreads=n :设置并发收集器年轻代收集方式为并行收集时,使用的CPU数。并行收集线程数。

2.2.5 调优总结

2.2.5.1 年轻代大小选择
  • 响应时间优先的应用 :尽可能设大,直到接近系统的最低响应时间限制 (根据实际情况选择)。在此种情况下,年轻代收集发生的频率也是最小的。同时,减少到达年老代的对象。
  • 吞吐量优先的应用 :尽可能的设置大,可能到达Gbit的程度。因为对响应时间没有要求,垃圾收集可以并行进行,一般适合8CPU以上的应用。
2.2.5.2 年老代大小选择
  • 响应时间优先的应用 :年老代使用并发收集器,所以其大小需要小心设置,一般要考虑并发会话率 和会话持续时间 等一些参数。如果堆设置小了,可以会造成内存碎片、高回收频率以及应用暂停而使用传统的标记清除方式;如果堆大了,则需要较长的收集时间。最优化的方案,一般需要参考以下数据获得:
    • 并发垃圾收集信息
    • 持久代并发收集次数
    • 传统GC信息
    • 花在年轻代和年老代回收上的时间比例

        减少年轻代和年老代花费的时间,一般会提高应用的效率。

  • 吞吐量优先的应用 :一般吞吐量优先的应用都有一个很大的年轻代和一个较小的年老代。原因是,这样可以尽可能回收掉大部分短期对象,减少中期的对象,而年老代尽存放长期存活对象。
2.2.5.3 较小堆引起的碎片问题

因为年老代的并发收集器使用标记、清除算法,所以不会对堆进行压缩。当收集器回收时,它会把相邻的空间进行合并,这样可以分配给较大的对象。但是,当堆空间较小时,运行一段时间以后,就会出现“碎片”,如果并发收集器找不到足够的空间,那么并发收集器将会停止,然后使用传统的标记、清除方式进行回收。如果出现“碎片”,可能需要进行如下配置:

  • -XX:+UseCMSCompactAtFullCollection :使用并发收集器时,开启对年老代的压缩。
  • -XX:CMSFullGCsBeforeCompaction=0 :上面配置开启的情况下,这里设置多少次Full GC后,对年老代进行压缩

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/209822?site
推荐阅读
相关标签
  

闽ICP备14008679号