赞
踩
BinTree.h
- #pragma once
- #include<iostream>
- #include<vector>
- using namespace std;
-
- /*
- 二叉排序树,对二叉排序树进行中序遍历,可以得到一个递增的有序序列
- */
-
-
- template<class T> class BinNode
- {
- public:
- T key;
- BinNode* lchild, * rchild;
- };
-
- template<class T> class BinTree
- {
- public:
- BinTree();//默认构造
- BinTree(T* arr, int len);//数组构造
- BinTree(vector<T> vec);//容器构造
- bool Insert(T& key);//插入节点
- void InOrder();//中序遍历外部接口
- bool Search(T key);//查找结点
- bool Delete(T& key);//删除结点
- bool isEmpty();//判断树是否为空树
-
- private:
- BinNode<T>* TNode;
- void _InOrder(BinNode<T>* T);//中序遍历内部实现
- void _visit(BinNode<T>* T);//访问结点内部实现
- BinNode<T>* _Search(BinNode<T>* t, T key);//查找结点内部实现
- bool _isLeaf(BinNode<T>* t);//判断一个结点是不是叶子节点
- bool _isNodeWithTwoChild(BinNode<T>* t);//判断一个结点是否有左右两棵子树
- BinNode<T>* _NodeMin(BinNode<T>* t, BinNode<T>*& parent);//找到当前节点为根的树中的最小值
- BinNode<T>* _Delete(BinNode<T>*& t);//删除根结点 并返回新的根节点,
- //针对只有一颗左或右子树的结点,删除结点时用到
- };
-
- template<class T> BinTree<T>::BinTree()//默认构造
- {
- TNode = NULL;
- }
-
- template<class T> BinTree<T>::BinTree(T* arr, int len)//数组构造
- {
- TNode = NULL;
- for (int i = 0; i < len; ++i)
- {
- Insert(*(arr + i));
- }
- }
-
- template<class T> BinTree<T>::BinTree(vector<T> vec)//容器构造
- {
- TNode = NULL;
- for (int i = 0; i < vec.size(); ++i)
- {
- Insert(vec[i]);
- }
- }
-
- template<class T> bool BinTree<T>::Insert(T& key)//插入节点
- {
- BinNode<T>* p = new BinNode<T>();//临时结点
- p->key = key;
- p->lchild = p->rchild = NULL;
- BinNode<T>* parent = new BinNode<T>();
- parent = NULL;
- if (TNode == NULL)//如果原树为空,则创建新树,插入的结点作为根节点
- {
- TNode = p;
- return true;
- }
- else
- {
- BinNode<T>* cur = TNode;
- while (cur)//插入的结点肯定是叶子结点,寻找叶子节点(parent)
- {
- if (cur->key == key)
- return false;
- else if (cur->key > key)
- {
- parent = cur;
- cur = cur->lchild;
- }
- else if (cur->key < key)
- {
- parent = cur;
- cur = cur->rchild;
- }
- }
- if (p->key < parent->key)
- {
- parent->lchild = p;
- return true;
- }
- else
- {
- parent->rchild = p;
- return true;
- }
- }
- }
-
- template<class T> void BinTree<T>::_visit(BinNode<T>* T)//访问结点
- {
- cout << T->key << endl;
- }
-
- template<class T> void BinTree<T>::_InOrder(BinNode<T>* T)//递归中序遍历内部函数
- {
- if (T != NULL)
- {
- _InOrder(T->lchild);
- _visit(T);
- _InOrder(T->rchild);
- }
- }
-
- template<class T> void BinTree<T>::InOrder()//中序遍历外部接口
- {
- _InOrder(TNode);
- }
-
- template<class T> BinNode<T>* BinTree<T>::_Search(BinNode<T>* t, T key)//递归查找结点内部函数
- {
- if (t == NULL)
- return NULL;
- else
- {
- if (t->key == key)
- return t;
- else if (t->key > key)
- {
- return _Search(t->lchild, key);
- }
- else if (t->key < key)
- {
- return _Search(t->rchild, key);
- }
- }
- }
- template<class T> bool BinTree<T>::Search(T key)//查找结点外部接口
- {
- return _Search(TNode, key) == NULL ? false : true;;
- }
-
- template<class T> bool BinTree<T>::isEmpty()//判断树是否为空
- {
- return TNode == NULL;
- }
-
- template<class T> bool BinTree<T>::_isLeaf(BinNode<T>* t)//判断一个结点是否是叶子结点
- {
- if (!isEmpty())
- {
- if (t->lchild == NULL && t->rchild == NULL)
- return true;
- else
- return false;
- }
- else
- return false;
- }
-
- template<class T> bool BinTree<T>::_isNodeWithTwoChild(BinNode<T>* t)//判断一个结点是否有左右两棵子树
- {
- if (!isEmpty())
- {
- if (t->lchild != NULL && t->rchild != NULL)
- return true;
- else
- return false;
- }
- else
- return false;
- }
-
- //找到当前节点为根的树中的最小值
- template<class T> BinNode<T>* BinTree<T>::_NodeMin(BinNode<T>* t, BinNode<T>*& parent)
- {
- BinNode<T>* cur = t;
- while (cur->lchild != NULL)
- {
- parent = cur;
- cur = cur->lchild;
- }
- return cur;
- }
-
- template<class T> BinNode<T>* BinTree<T>::_Delete(BinNode<T>*& t)//一棵树仅有左孩子或者有孩子
- {
- if (t->lchild != NULL)
- return t->lchild;
- else
- return t->rchild;
- }
-
- //删除结点
- template<class T> bool BinTree<T>::Delete(T& key)
- {
- /*
- 先搜索找到目标结点z
- 删除节点分为三种情况:
- 1.若被删除节点z是叶节点,则直接删除,不会破坏二叉排序树的性质
- 2.若被删除节点z只有一棵左子树或右子树,则让z的子树替代z的位置
- 3.若被删除结点z有左右两棵子树,则令z的直接后继(或直接前驱)替代z,
- 然后从二叉排序树中删除这个直接后继(或直接前驱),这样就转换成了第一或第二种情况
- */
- if (isEmpty())
- {
- cout << "空树 无法删除" << endl;
- return false;
- }
- else
- {
- bool find = false;
- BinNode<T>* parent=TNode;
- //BinNode<T>* t = _Search(TNode, key,parent);
- BinNode<T>* cur = TNode;
- while (cur)
- {
- if (key < cur->key)
- {
- parent = cur;
- cur = cur->lchild;
- }
- else if (key > cur->key)
- {
- parent = cur;
- cur = cur->rchild;
- }
- else if (key == cur->key)
- {
- find = true;
- break;
- }
- }
- if (!find)
- {
- cout << "该结点未找到" << endl;
- return false;
- }
- if (_isLeaf(cur))
- {
- if (parent->lchild->key == key)
- parent->lchild = NULL;
- else
- parent->rchild = NULL;
- delete cur;
- return true;
- }
- else if (_isNodeWithTwoChild(cur))
- {//该结点右子树的最小值即为该节点的直接后继
- BinNode<T>* parent = cur;
- BinNode<T>* temp = _NodeMin(cur->rchild,parent);
- cur->key= temp->key;
- if (parent->rchild == temp)
- parent->rchild = _Delete(temp);
- else if (parent->lchild == temp)
- parent->lchild = _Delete(temp);
- delete temp;
- return true;
- }
- else
- {
- if (cur->lchild != NULL)
- {
- parent->lchild = _Delete(cur);
- delete cur;
- return true;
- }
- else
- {
- parent->rchild = _Delete(cur);
- delete cur;
- return true;
- }
- }
- }
- }

源.cpp
- #include <iostream>
- #include "BinTree.h"
- using namespace std;
-
- void test01()
- {
- int arr[] = { 19,13,11,8,50,26,21,30,66,60,70,63,61,65,71 };
- BinTree<int> T(arr,15);
- T.InOrder();
- cout << "-------" << endl;
- cout << T.Search(7) << endl;
- cout << T.Search(70) << endl;
- int a = 70;
- cout << "-------1" << endl;
- cout << T.Delete(a) << endl;
- cout << "-------------2" << endl;
- T.InOrder();
- }
-
- int main()
- {
- test01();
- return 0;
- }

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。