当前位置:   article > 正文

华为诺亚实验室最新研究进展 | AIGC时代的ImageNet,百万生成图片助力AI生成图片检测器研发_aigc benchmark

aigc benchmark

Title: GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image
Paper: https://arxiv.org/abs/2306.08571
Code: https://github.com/GenImage-Dataset/GenImage

导读

在这个 AIGC 爆发的时代,人人都可以利用AI算法生成高质量的文本,图像,音频内容。其中,由Midjourney, Stable Diffusion等图像生成方法制作的图像,其逼真程度让人赞叹。人眼已经难以对其真假进行区分了。这不禁唤起了人们的隐忧:大量虚假图片将会在互联网上广泛传播。虚假图片的泛滥会引发多种社会安全问题。例如,虚假新闻会扰乱社会秩序,混淆视听。恶意的人脸图片造假则会引发金融欺诈,造成信任危机。

例如,下图为Midjourney生成的特朗普被捕图片。这类图片在社交媒体上广泛传播,对政治领域造成了不良影响。因此,对这些AI生成的图像进行有效监管是非常有必要的。

图2 AI生成的特朗普被捕图片

考虑到人眼已经难以对真假图片进行区分,我们急需一种AI生成图像检测器以区分AI制作的图像和真实的图像。然而,现在大规模数据集的缺失妨碍了检测器的开发。因此,我们提出了百万量级的GenImage数据集,致力于构建AIGC时代的ImageNet。

数据集介绍

表1 虚假图片检测数据集概览

过去业界也有推出一些数据集。他们主要有三个特点。第一个是数据规模小,第二个是都是基于GAN的,第三个是局限于人脸数据。随着时间推移,数据规模慢慢地在增加,生成器也从GAN时代过渡到Diffusion时代,数据的范围也在增加。但是一个大规模的,以Diffusion模型为主的,涵盖各类通用图像的数据集仍然是缺失的。

基于此,我们提出一个对标imagenet的genimage数据集。真实的图片采用了ImageNet。虚假的图片采用ImageNet的标签进行生成。我们利用了八个先进的生成器来生成,分别是Midjourney, Stable Diffusion V1.4, Stable Diffusion V1.5, ADM, GLIDE, Wukong,VQDM和BigGAN。这些生成器生成的图片总数基本与真实图片一致。每个生成器生成的图片数量也基本一致。每一类生成的图片数量基本一致。

这个数据集具有以下优势:

  1. 大量的数据:超过百万对图片对。
  2. 丰富的图片内容:利用ImageNet进行构建,具有丰富的标签
  3. 先进的生成器:覆盖Midjourney, Stable Diffusion等Diffusion生成器。

在真实世界中检测器往往会遇到各种各样的困难。我们经过实验发现,检测器往往在两种情况下性能下降严重。第一种是面对训练集中未出现的生成器生成的图片时。第二种是面对退化的图像。例如,CNNSpot在Stable Diffusion V1.4上训练后,在Midjourney上测试仅有52.8的准确率。当训练和测试生成器同为Stable Diffusion V1.4,在面对模糊的图像时,CNNSpot准确率仅仅为77.9。基于此,我们在这个数据集基础上对检测器提出两个挑战:

  1. 交叉生成器:检测器在一种生成器生成的数据上训练,在其他生成器生成的数据上验证。这个任务目的是考察检测器在不同生成器上的泛化能力。
  2. 退化图像识别:检测器需要对于低分辨率,模糊和压缩图像进行识别。这个任务主要考察检测器在真实条件(如互联网上传播)中面对低质量图像时的泛化问题。

我们相信这个数据集的提出将大大有助于人们开发AI生成图片检测器。

实验

我们做了一些实验来考察这个数据集,我们发现在某个生成器上训练的ResNet-50模型在其他的测试准确率会明显降低。然而在真实情况下我们难以得知遇到的图像的生成器是什么。因此检测器对于不同生成器生成图片的泛化能力很重要。

表2 使用ResNet 50在不同生成器上交叉验证

我们对比了现有方法在Stable Diffusion V1.4上训练,然后在各种生成器上测试的结果,见图3。我们也评测了各种生成器上训练,然后在各种生成器上测试的结果。见图4。图4中,Testing Subset那一列中的每一个数据点,都是在八个生成器上训练,然后在一个生成器上测试得到的平均结果。然后我们将这些测试集上的结果平均,得到最右侧的平均结果。

表3 在Stable Diffusion V1.4上训练,不同测试集上测试

表4 在不同生成器上训练,不同测试集上测试

我们对测试集进行退化处理,采用不同参数下的低分辨率,JPEG压缩和高斯模糊,评
测结果如下

表5 在不同退化图像上验证结果

那么采集这么多数据是不是有用呢?我们做了相关实验,证明通过提升数据类比和每类的图片数量,我们是可以提高性能的。

表6 提升图片数量的结果

针对GenImage数据集对于不同图片的泛化能力,我们发现他对于人脸和艺术类图片也能达到很好的效果。

表7 泛化到艺术类和人脸类图片的结果

图3 测试所用的艺术类和人脸类图片展示

总结

随着AI生成图片能力的不断提升,对于AI生成的图片实现有效检测的需求将会越来越迫切。本数据集致力于为真实环境下的生成图片检测提供有效训练数据。我们使用ResNet-50在本数据集中训练,然后在真实推文中进行检测。如下图4,ResNet-50能够有效识别真图和假图。这个结果证明了GenIamge可以用于训练模型以判别真实世界的虚假信息。我们认为,该领域未来值得努力的方向是不断提升检测器在GenImage数据集上的准确率,并进而提升其在真实世界面对虚假信息的能力。

图4 真实推文展示

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/321810
推荐阅读
相关标签
  

闽ICP备14008679号