赞
踩
扩展是将短文本,例如一组说明或主题列表,输入到大型语言模型中,让模型生成更长的文本,例如基于某个主题的电子邮件或论文。这样做有一些很好的用途,例如将大型语言模型用作头脑风暴的伙伴。但这种做法也存在一些问题,例如某人可能会使用它来生成大量垃圾邮件。
在本章中,你将学会如何基于 OpenAI API 生成适用于每个客户评价的客户服务电子邮件。我们还将使用模型的另一个输入参数称为温度,这种参数允许您在模型响应中变化探索的程度和多样性。
现在我们一起看示例代码。我们在这里获得了OpenAI API密钥,并使用了上一次看到的同样的辅助函数。
import openai
import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file
openai.api_key = os.getenv('OPENAI_API_KEY')
def get_completion(prompt, model="gpt-3.5-turbo",temperature=0): # Andrew mentioned that the prompt/ completion paradigm is preferable for this class
messages = [{"role": "user", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperatu
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。