赞
踩
不论是校招还是社招都避免不了各种面试、笔试,如何去准备这些东西就显得格外重要。 运筹帷幄之后,决胜千里之外!不打毫无准备的仗,我觉得大家可以先从下面几个方面来准备面试:
1. 自我介绍。(介绍自己的项目经历以及一些特长而不是简单自我介绍喜好等)
2. 自己面试中可能涉及哪些知识点、那些知识点是重点。
3. 面试中哪些问题会被经常问到、面试中自己该如何回答。
4. 自己的简历该如何写。
“80%的offer掌握在20%的人手中” 这句话也不是不无道理的。决定你面试能否成功的因素中实力固然占有很大一部 分比例,但是如果你的心态或者说运气不好的话,依然无法拿到满意的 offer。运气暂且不谈,就拿心态来说,千万 不要因为面试失败而气馁或者说怀疑自己的能力,面试失败之后多总结一下失败的原因,后面你就会发现自己会越来 越强大。
另外,大家要明确的很重要的几点是:
1. 写在简历上的东西一定要慎重,这可能是面试官大量提问的地方;
2. 将自己的项目经历完美的展示出来非常重要。
大数据、算法项目在任何大厂无论是面试还是工作运用都是非常广泛的,我们精选了50个百度、腾讯、阿里等大厂的大数据、算法落地经验甩给大家,千万不要做收藏党哦,空闲时间记得随时看看!
如果你没有大厂项目经验,对大厂算法、大数据的项目运用不了解建议你看看!
知识图谱在人工智能应用中的重要价值日益突显。百度构建了超大规模的通用知识图谱,并在搜索、 推荐、智能交互等多项产品中广泛应用。同时,随着文本、语音、视觉等智能技术的不断深入,知识图谱在复杂知识表示、多模语义理解技术与应用等方面都面临新的挑战与机遇。本文将介绍百度基于知识图谱,从文本到多模态内容的理解技术及应用的最新进展。
目前信息流推荐中使用的内容理解技术,主要有两部分构成:
1.门户时代和搜索时代遗留的技术积累:分类、关键词以及知识图谱相关技术;
2.深度学习带来的技术福利: embedding.但是分类对于兴趣点刻画太粗,实体又容易引起推荐多样性问题,而embedding技术又面临难以解释的问题。
这次主要介绍在信息流推荐中,腾讯是如何做内容理解克服上述问题的。
主要包括:项目背景、兴趣图谱、内容理解、线上效果。
内容提纲:
随着RTB网络在线展现广告交易模式的兴起,各大公司都纷纷搭建自己的DSP ( Demand-Side Platform)广告投放系统进行获客。优酷在近几年也搭建DSP系统,并且在持续迭代。在这一过程中 ,经历哪些技术探索?趟过哪些坑?有怎样的技术方案沉淀?下面我将从技术视角分享出来,希望对大家有启发。
京东电商推荐系统实践方面的经验
随着AI科技的发展,智能语音交互技术正在被国内外巨头公司逐步落地和规模化应用。滴滴出行作为移动出行领域的一家领先的移动互联网企业,也正积极布局和利用智能语音交互相关技术,如语音识别、语音对话理解、语音合成等,以便更好的为司机和乘客提供高质量服务,具体地,包含有司机智能助手和滴滴智能客服系统等应用产品。
智能客服是一种使用自然语言与用户交互的人工智能系统,通过分析用户意图,以人性化的方式与用户沟通,向用户提供客户服务。
本议题首先介绍美团智能客服的对话交互框架,然后就我们在其中意图挖掘、意图理解、情绪识别、对话管理等核心模块中用到的机器学习算法进行详细的介绍。
微博作为国内比较主流的社交媒体平台,目前拥有2.22亿日活用户和5.16亿月活用户。如何为用户实时推荐优质内容,背后离不开微博的大规模机器学习平台。
从底层的机器监控到直面用户的应用,都离不开时序性的业务场景,而时序性的数据一般都由专业的时序数据库来存储分析,下面主要介绍TSDB覆盖的业务场景以及面临的挑战
主要分享数据分析平台的平台演进以及我们在上面沉淀的一些数据分析方法是如何应用的。
Kafka高级篇知识点
44个Kafka知识点(基础+进阶+高级)解析如下
09570719)]
Kafka高级篇知识点
[外链图片转存中…(img-lInPXwMO-1620609570719)]
44个Kafka知识点(基础+进阶+高级)解析如下
[外链图片转存中…(img-jJcrrqhi-1620609570720)]
由于篇幅有限,小编已将上面介绍的**《Kafka源码解析与实战》、Kafka面试专题解析、复习学习必备44个Kafka知识点(基础+进阶+高级)都整理成册,全部都是PDF文档**,有需求的朋友可以戳这里免费下载
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。