赞
踩
转载自:https://blog.csdn.net/wangyangzhizhou/article/details/77332582
GRU即Gated Recurrent Unit。前面说到为了克服RNN无法很好处理远距离依赖而提出了LSTM,而GRU则是LSTM的一个变体,当然LSTM还有有很多其他的变体。GRU保持了LSTM的效果同时又使结构更加简单,所以它也非常流行。
回顾一下LSTM的模型,LSTM的重复网络模块的结构很复杂,它实现了三个门计算,即遗忘门、输入门和输出门。
而GRU模型如下,它只有两个门了,分别为更新门和重置门,即图中的ztzt和rtrt。更新门用于控制前一时刻的状态信息被带入到当前状态中的程度,更新门的值越大说明前一时刻的状态信息带入越多。重置门用于控制忽略前一时刻的状态信息的程度,重置门的值越小说明忽略得越多。
根据前面GRU模型图来一步步看他是怎么向前传播的,根据图不难得到以下式子:
其中[]表示两个向量相连接,*表示矩阵元素相乘。
从前面的公式中可以看到需要学习的参数就是WrWzWhWo那些权重参数,其中前三个权重都是拼接的,所以在学习时需要分割出来,即
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。