1 logging模块简介
logging模块是Python内置的标准模块,主要用于输出运行日志,可以设置输出日志的等级、日志保存路径、日志文件回滚等;相比print,具备如下优点:
- 可以通过设置不同的日志等级,在release版本中只输出重要信息,而不必显示大量的调试信息;
- print将所有信息都输出到标准输出中,严重影响开发者从标准输出中查看其它数据;logging则可以由开发者决定将信息输出到什么地方,以及怎么输出;
2 logging模块使用
2.1 基本使用
配置logging基本的设置,然后在控制台输出日志,
- import logging
- logging.basicConfig(level = logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- logger = logging.getLogger(__name__)
-
- logger.info("Start print log")
- logger.debug("Do something")
- logger.warning("Something maybe fail.")
- logger.info("Finish")
运行时,控制台输出,
1 2016-10-09 19:11:19,434 - __main__ - INFO - Start print log 2 2016-10-09 19:11:19,434 - __main__ - WARNING - Something maybe fail. 3 2016-10-09 19:11:19,434 - __main__ - INFO - Finish
logging中可以选择很多消息级别,如:DEBUG,INFO,WARNING,ERROR,CRITICAL,通过赋予logger或者handler不同的级别,开发者就可以只输出错误信息到特定的记录文件,或者在调试时只记录调试信息。
将logger的级别改为DEBUG,再观察一下输出结果
logging.basicConfig(level = logging.DEBUG,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s')
从输出结果可以看到,输出了debug的日志记录
- 2016-10-09 19:12:08,289 - __main__ - INFO - Start print log
- 2016-10-09 19:12:08,289 - __main__ - DEBUG - Do something
- 2016-10-09 19:12:08,289 - __main__ - WARNING - Something maybe fail.
- 2016-10-09 19:12:08,289 - __main__ - INFO - Finish
logging.basicConfig函数各参数:
- filename:指定日志文件名;
-
- filemode:和file函数意义相同,指定日志文件的打开模式,'w'或者'a';
-
- format:指定输出的格式和内容,format可以输出很多有用的信息,
-
- datefmt:指定时间格式,同time.strftime();
-
- level:设置日志级别,默认为logging.WARNNING;
-
- stream:指定将日志的输出流,可以指定输出到sys.stderr,sys.stdout或者文件,默认输出到sys.stderr,当stream和filename同时指定时,stream被忽略;
属性名称
|
格式
|
说明
|
name
|
%(name)s
|
日志的名称
|
asctime
|
%(asctime)s
| 可读时间,默认格式‘2003-07-08 16:49:45,896’,逗号之后是毫秒 |
filename
|
%(filename)s
| 文件名,pathname的一部分 |
pathname
|
%(pathname)s
|
文件的全路径名称
|
funcName
|
%(funcName)s
|
调用日志多对应的方法名
|
levelname
|
%(levelname)s
|
日志的等级
|
levelno
|
%(levelno)s
|
数字化的日志等级
|
lineno
|
%(lineno)d
|
被记录日志在源码中的行数
|
module
|
%(module)s
| 模块名 |
msecs | %(msecs)d | 时间中的毫秒部分 |
process
|
%(process)d
|
进程的ID
|
processName
|
%(processName)s
|
进程的名称
|
thread
|
%(thread)d
|
线程的ID
|
threadName
|
%(threadName)s
|
线程的名称
|
relativeCreated
|
%(relativeCreated)d
|
日志被创建的相对时间,以毫秒为单位
|
2.2 将日志写入到文件
2.2.1 将日志写入到文件
设置logging,创建一个FileHandler,并对输出消息的格式进行设置,将其添加到logger,然后将日志写入到指定的文件中,
- import logging
- logger = logging.getLogger(__name__)
- logger.setLevel(level = logging.INFO)
- handler = logging.FileHandler("log.txt")
- handler.setLevel(logging.INFO)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- handler.setFormatter(formatter)
- logger.addHandler(handler)
-
- logger.info("Start print log")
- logger.debug("Do something")
- logger.warning("Something maybe fail.")
- logger.info("Finish")
log.txt中日志数据为:
2017-07-25 15:02:09,905 - __main__ - INFO - Start print log
2017-07-25 15:02:09,905 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:02:09,905 - __main__ - INFO - Finish
2.2.2 将日志同时输出到屏幕和日志文件
logger中添加StreamHandler,可以将日志输出到屏幕上,
- import logging
- logger = logging.getLogger(__name__)
- logger.setLevel(level = logging.INFO)
- handler = logging.FileHandler("log.txt")
- handler.setLevel(logging.INFO)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- handler.setFormatter(formatter)
-
- console = logging.StreamHandler()
- console.setLevel(logging.INFO)
-
- logger.addHandler(handler)
- logger.addHandler(console)
-
- logger.info("Start print log")
- logger.debug("Do something")
- logger.warning("Something maybe fail.")
- logger.info("Finish")
可以在log.txt文件和控制台中看到
2017-07-25 15:03:05,075 - __main__ - INFO - Start print log
2017-07-25 15:03:05,075 - __main__ - WARNING - Something maybe fail.
2017-07-25 15:03:05,075 - __main__ - INFO - Finish
可以发现,logging有一个日志处理的主对象,其他处理方式都是通过addHandler添加进去,logging中包含的handler主要有如下几种,
- handler名称:位置;作用
-
- StreamHandler:logging.StreamHandler;日志输出到流,可以是sys.stderr,sys.stdout或者文件
- FileHandler:logging.FileHandler;日志输出到文件
- BaseRotatingHandler:logging.handlers.BaseRotatingHandler;基本的日志回滚方式
- RotatingHandler:logging.handlers.RotatingHandler;日志回滚方式,支持日志文件最大数量和日志文件回滚
- TimeRotatingHandler:logging.handlers.TimeRotatingHandler;日志回滚方式,在一定时间区域内回滚日志文件
- SocketHandler:logging.handlers.SocketHandler;远程输出日志到TCP/IP sockets
- DatagramHandler:logging.handlers.DatagramHandler;远程输出日志到UDP sockets
- SMTPHandler:logging.handlers.SMTPHandler;远程输出日志到邮件地址
- SysLogHandler:logging.handlers.SysLogHandler;日志输出到syslog
- NTEventLogHandler:logging.handlers.NTEventLogHandler;远程输出日志到Windows NT/2000/XP的事件日志
- MemoryHandler:logging.handlers.MemoryHandler;日志输出到内存中的指定buffer
- HTTPHandler:logging.handlers.HTTPHandler;通过"GET"或者"POST"远程输出到HTTP服务器
2.2.3 日志回滚
使用RotatingFileHandler,可以实现日志回滚,
- import logging
- from logging.handlers import RotatingFileHandler
- logger = logging.getLogger(__name__)
- logger.setLevel(level = logging.INFO)
- #定义一个RotatingFileHandler,最多备份3个日志文件,每个日志文件最大1K
- rHandler = RotatingFileHandler("log.txt",maxBytes = 1*1024,backupCount = 3)
- rHandler.setLevel(logging.INFO)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- rHandler.setFormatter(formatter)
-
- console = logging.StreamHandler()
- console.setLevel(logging.INFO)
- console.setFormatter(formatter)
-
- logger.addHandler(rHandler)
- logger.addHandler(console)
-
- logger.info("Start print log")
- logger.debug("Do something")
- logger.warning("Something maybe fail.")
- logger.info("Finish")
可以在工程目录中看到,备份的日志文件,
.3 设置消息的等级
可以设置不同的日志等级,用于控制日志的输出
- 日志等级:使用范围
-
- FATAL:致命错误
- CRITICAL:特别糟糕的事情,如内存耗尽、磁盘空间为空,一般很少使用
- ERROR:发生错误时,如IO操作失败或者连接问题
- WARNING:发生很重要的事件,但是并不是错误时,如用户登录密码错误
- INFO:处理请求或者状态变化等日常事务
- DEBUG:调试过程中使用DEBUG等级,如算法中每个循环的中间状态
setLevel(lvl) 定义处理log的最低等级,内建的级别为:DEBUG,INFO,WARNING,ERROR,CRITICAL;下图是级别对应数值
2.4 捕获traceback
Python中的traceback模块被用于跟踪异常返回信息,可以在logging中记录下traceback
- import logging
- logger = logging.getLogger(__name__)
- logger.setLevel(level = logging.INFO)
- handler = logging.FileHandler("log.txt")
- handler.setLevel(logging.INFO)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- handler.setFormatter(formatter)
-
- console = logging.StreamHandler()
- console.setLevel(logging.INFO)
-
- logger.addHandler(handler)
- logger.addHandler(console)
-
- logger.info("Start print log")
- logger.debug("Do something")
- logger.warning("Something maybe fail.")
- try:
- open("sklearn.txt","rb")
- except (SystemExit,KeyboardInterrupt):
- raise
- except Exception:
- logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
-
- logger.info("Finish")
控制台和日志文件log.txt中输出


1 2017-07-25 15:04:24,045 - __main__ - INFO - Start print log 2 2017-07-25 15:04:24,045 - __main__ - WARNING - Something maybe fail. 3 2017-07-25 15:04:24,046 - __main__ - ERROR - Faild to open sklearn.txt from logger.error 4 Traceback (most recent call last): 5 File "E:\PYTHON\Eclipse\eclipse\Doc\14day5\Logger模块\Logging.py", line 71, in <module> 6 open("sklearn.txt","rb") 7 IOError: [Errno 2] No such file or directory: 'sklearn.txt' 8 2017-07-25 15:04:24,049 - __main__ - INFO - Finish
也可以使用logger.exception(msg,_args),它等价于logger.error(msg,exc_info = True,_args),
- 将
- logger.error("Faild to open sklearn.txt from logger.error",exc_info = True)
- 替换为,
- logger.exception("Failed to open sklearn.txt from logger.exception")
2.5 多模块使用logging
主模块mainModule.py
- import logging
- import subModule
- logger = logging.getLogger("mainModule")
- logger.setLevel(level = logging.INFO)
- handler = logging.FileHandler("log.txt")
- handler.setLevel(logging.INFO)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- handler.setFormatter(formatter)
-
- console = logging.StreamHandler()
- console.setLevel(logging.INFO)
- console.setFormatter(formatter)
-
- logger.addHandler(handler)
- logger.addHandler(console)
-
-
- logger.info("creating an instance of subModule.subModuleClass")
- a = subModule.SubModuleClass()
- logger.info("calling subModule.subModuleClass.doSomething")
- a.doSomething()
- logger.info("done with subModule.subModuleClass.doSomething")
- logger.info("calling subModule.some_function")
- subModule.som_function()
- logger.info("done with subModule.some_function")
子模块subModule.py
- import logging
-
- module_logger = logging.getLogger("mainModule.sub")
- class SubModuleClass(object):
- def __init__(self):
- self.logger = logging.getLogger("mainModule.sub.module")
- self.logger.info("creating an instance in SubModuleClass")
- def doSomething(self):
- self.logger.info("do something in SubModule")
- a = []
- a.append(1)
- self.logger.debug("list a = " + str(a))
- self.logger.info("finish something in SubModuleClass")
-
- def som_function():
- module_logger.info("call function some_function")
执行之后,在控制和日志文件log.txt中输出


1 2017-07-25 15:05:07,427 - mainModule - INFO - creating an instance of subModule.subModuleClass 2 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - creating an instance in SubModuleClass 3 2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.subModuleClass.doSomething 4 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - do something in SubModule 5 2017-07-25 15:05:07,427 - mainModule.sub.module - INFO - finish something in SubModuleClass 6 2017-07-25 15:05:07,427 - mainModule - INFO - done with subModule.subModuleClass.doSomething 7 2017-07-25 15:05:07,427 - mainModule - INFO - calling subModule.some_function 8 2017-07-25 15:05:07,427 - mainModule.sub - INFO - call function some_function 9 2017-07-25 15:05:07,428 - mainModule - INFO - done with subModule.some_function
说明:
首先在主模块定义了logger'mainModule',并对它进行了配置,就可以在解释器进程里面的其他地方通过getLogger('mainModule')得到的对象都是一样的,不需要重新配置,可以直接使用。定义的该logger的子logger,都可以共享父logger的定义和配置,所谓的父子logger是通过命名来识别,任意以'mainModule'开头的logger都是它的子logger,例如'mainModule.sub'。
实际开发一个application,首先可以通过logging配置文件编写好这个application所对应的配置,可以生成一个根logger,如'PythonAPP',然后在主函数中通过fileConfig加载logging配置,接着在application的其他地方、不同的模块中,可以使用根logger的子logger,如'PythonAPP.Core','PythonAPP.Web'来进行log,而不需要反复的定义和配置各个模块的logger。
3 通过JSON或者YAML文件配置logging模块
尽管可以在Python代码中配置logging,但是这样并不够灵活,最好的方法是使用一个配置文件来配置。在Python 2.7及以后的版本中,可以从字典中加载logging配置,也就意味着可以通过JSON或者YAML文件加载日志的配置。
3.1 通过JSON文件配置
JSON配置文件
- {
- "version":1,
- "disable_existing_loggers":false,
- "formatters":{
- "simple":{
- "format":"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
- }
- },
- "handlers":{
- "console":{
- "class":"logging.StreamHandler",
- "level":"DEBUG",
- "formatter":"simple",
- "stream":"ext://sys.stdout"
- },
- "info_file_handler":{
- "class":"logging.handlers.RotatingFileHandler",
- "level":"INFO",
- "formatter":"simple",
- "filename":"info.log",
- "maxBytes":"10485760",
- "backupCount":20,
- "encoding":"utf8"
- },
- "error_file_handler":{
- "class":"logging.handlers.RotatingFileHandler",
- "level":"ERROR",
- "formatter":"simple",
- "filename":"errors.log",
- "maxBytes":10485760,
- "backupCount":20,
- "encoding":"utf8"
- }
- },
- "loggers":{
- "my_module":{
- "level":"ERROR",
- "handlers":["info_file_handler"],
- "propagate":"no"
- }
- },
- "root":{
- "level":"INFO",
- "handlers":["console","info_file_handler","error_file_handler"]
- }
- }
通过JSON加载配置文件,然后通过logging.dictConfig配置logging,
- import json
- import logging.config
- import os
-
- def setup_logging(default_path = "logging.json",default_level = logging.INFO,env_key = "LOG_CFG"):
- path = default_path
- value = os.getenv(env_key,None)
- if value:
- path = value
- if os.path.exists(path):
- with open(path,"r") as f:
- config = json.load(f)
- logging.config.dictConfig(config)
- else:
- logging.basicConfig(level = default_level)
-
- def func():
- logging.info("start func")
-
- logging.info("exec func")
-
- logging.info("end func")
-
- if __name__ == "__main__":
- setup_logging(default_path = "logging.json")
- func()
3.2 通过YAML文件配置
通过YAML文件进行配置,比JSON看起来更加简介明了,
- version: 1
- disable_existing_loggers: False
- formatters:
- simple:
- format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
- handlers:
- console:
- class: logging.StreamHandler
- level: DEBUG
- formatter: simple
- stream: ext://sys.stdout
- info_file_handler:
- class: logging.handlers.RotatingFileHandler
- level: INFO
- formatter: simple
- filename: info.log
- maxBytes: 10485760
- backupCount: 20
- encoding: utf8
- error_file_handler:
- class: logging.handlers.RotatingFileHandler
- level: ERROR
- formatter: simple
- filename: errors.log
- maxBytes: 10485760
- backupCount: 20
- encoding: utf8
- loggers:
- my_module:
- level: ERROR
- handlers: [info_file_handler]
- propagate: no
- root:
- level: INFO
- handlers: [console,info_file_handler,error_file_handler]
通过YAML加载配置文件,然后通过logging.dictConfig配置logging
- import yaml
- import logging.config
- import os
-
- def setup_logging(default_path = "logging.yaml",default_level = logging.INFO,env_key = "LOG_CFG"):
- path = default_path
- value = os.getenv(env_key,None)
- if value:
- path = value
- if os.path.exists(path):
- with open(path,"r") as f:
- config = yaml.load(f)
- logging.config.dictConfig(config)
- else:
- logging.basicConfig(level = default_level)
-
- def func():
- logging.info("start func")
-
- logging.info("exec func")
-
- logging.info("end func")
-
- if __name__ == "__main__":
- setup_logging(default_path = "logging.yaml")
- func()
-
4 Reference
http://wjdadi-gmail-com.iteye.com/blog/1984354
关于 logging 的一些琐事
python logging 重复写日志问题