当前位置:   article > 正文

网络安全最全图解最常用的 10 个机器学习算法!(4),2024年最新网络安全面试题汇总_神经网络学习矢量量化网络

神经网络学习矢量量化网络

还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!

王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。

对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!

【完整版领取方式在文末!!】

93道网络安全面试题

内容实在太多,不一一截图了

黑客学习资源推荐

最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

1️⃣零基础入门
① 学习路线

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

image

② 路线对应学习视频

同时每个成长路线对应的板块都有配套的视频提供:

image-20231025112050764

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。

举个例子来说,你不能说神经网络永远比决策树好,反之亦然。模型运行被许多因素左右,例如数据集的大小和结构。

因此,你应该根据你的问题尝试许多不同的算法,同时使用数据测试集来评估性能并选出最优项。

当然,你尝试的算法必须和你的问题相切合,其中的门道便是机器学习的主要任务。打个比方,如果你想打扫房子,你可能会用到吸尘器、扫帚或者拖把,但你肯定不会拿把铲子开始挖坑吧。

对于渴望了解机器学习基础知识的机器学习新人来说,这儿有份数据科学家使用的十大机器学习算法,为你介绍这十大算法的特性,便于大家更好地理解和应用,快来看看吧。

01  线性回归

线性回归可能是统计学和机器学习中最知名和最易理解的算法之一。

由于预测建模主要关注最小化模型的误差,或者以可解释性为代价来做出最准确的预测。我们会从许多不同领域借用、重用和盗用算法,其中涉及一些统计学知识。

线性回归用一个等式表示,通过找到输入变量的特定权重(B),来描述输入变量(x)与输出变量(y)之间的线性关系。

图片

举例:y = B0 + B1 * x

给定输入x,我们将预测y,线性回归学习算法的目标是找到系数B0和B1的值。

可以使用不同的技术从数据中学习线性回归模型,例如用于普通最小二乘和梯度下降优化的线性代数解。

线性回归已经存在了200多年,并且已经进行了广泛的研究。如果可能的话,使用这种技术时的一些经验法则是去除非常相似(相关)的变量并从数据中移除噪声。这是一种快速简单的技术和良好的第一种算法。

02 逻辑回归

逻辑回归是机器学习从统计领域借鉴的另一种技术。这是二分类问题的专用方法(两个类值的问题)。

逻辑回归与线性回归类似,这是因为两者的目标都是找出每个输入变量的权重值。与线性回归不同的是,输出的预测值得使用称为逻辑函数的非线性函数进行变换。

逻辑函数看起来像一个大S,并能将任何值转换为0到1的范围内。这很有用,因为我们可以将相应规则应用于逻辑函数的输出上,把值分类为0和1(例如,如果IF小于0.5,那么 输出1)并预测类别值。

图片

由于模型的特有学习方式,通过逻辑回归所做的预测也可以用于计算属于类0或类1的概率。这对于需要给出许多基本原理的问题十分有用。

与线性回归一样,当你移除与输出变量无关的属性以及彼此非常相似(相关)的属性时,逻辑回归确实会更好。这是一个快速学习和有效处理二元分类问题的模型。

03 线性判别分析

传统的逻辑回归仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(Linear Discriminant Analysis,简称LDA)是首选的线性分类技术。

图片

LDA的表示非常简单。它由你的数据的统计属性组成,根据每个类别进行计算。对于单个输入变量,这包括:

  • 每类的平均值。
  • 跨所有类别计算的方差。

LDA通过计算每个类的判别值并对具有最大值的类进行预测来进行。该技术假定数据具有高斯分布(钟形曲线),因此最好先手动从数据中移除异常值。这是分类预测建模问题中的一种简单而强大的方法。

04 分类和回归树

决策树是机器学习的一种重要算法。

决策树模型可用二叉树表示。对,就是来自算法和数据结构的二叉树,没什么特别。每个节点代表单个输入变量(x)和该变量上的左右孩子(假定变量是数字)。

图片

树的叶节点包含用于进行预测的输出变量(y)。预测是通过遍历树进行的,当达到某一叶节点时停止,并输出该叶节点的类值。

决策树学习速度快,预测速度快。对于许多问题也经常预测准确,并且你不需要为数据做任何特殊准备。

05 朴素贝叶斯

朴素贝叶斯是一种简单但极为强大的预测建模算法。

该模型由两种类型的概率组成,可以直接从你的训练数据中计算出来:1)每个类别的概率; 2)给定的每个x值的类别的条件概率。一旦计算出来,概率模型就可以用于使用贝叶斯定理对新数据进行预测。当你的数据是数值时,通常假设高斯分布(钟形曲线),以便可以轻松估计这些概率。

图片

朴素贝叶斯被称为朴素的原因,在于它假设每个输入变量是独立的。这是一个强硬的假设,对于真实数据来说是不切实际的,但该技术对于大范围内的复杂问题仍非常有效。

06 K近邻

KNN算法非常简单而且非常有效。KNN的模型用整个训练数据集表示。是不是特简单?

通过搜索整个训练集内K个最相似的实例(邻居),并对这些K个实例的输出变量进行汇总,来预测新的数据点。对于回归问题,新的点可能是平均输出变量,对于分类问题,新的点可能是众数类别值。

成功的诀窍在于如何确定数据实例之间的相似性。如果你的属性都是相同的比例,最简单的方法就是使用欧几里德距离,它可以根据每个输入变量之间的差直接计算。

图片

KNN可能需要大量的内存或空间来存储所有的数据,但只有在需要预测时才会执行计算(或学习)。你还可以随时更新和管理你的训练集,以保持预测的准确性。

距离或紧密度的概念可能会在高维环境(大量输入变量)下崩溃,这会对算法造成负面影响。这类事件被称为维度诅咒。它也暗示了你应该只使用那些与预测输出变量最相关的输入变量。

07 学习矢量量化

K-近邻的缺点是你需要维持整个训练数据集。学习矢量量化算法(或简称LVQ)是一种人工神经网络算法,允许你挂起任意个训练实例并准确学习他们。

学习路线:

这个方向初期比较容易入门一些,掌握一些基本技术,拿起各种现成的工具就可以开黑了。不过,要想从脚本小子变成黑客大神,这个方向越往后,需要学习和掌握的东西就会越来越多以下是网络渗透需要学习的内容:
在这里插入图片描述

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/718683
推荐阅读
相关标签
  

闽ICP备14008679号