赞
踩
目录
在进化算法中,遗传模拟退火算法(Genetic Simulated Annealing)是一种结合了遗传算法和模拟退火算法的优化算法。它利用遗传算法的全局搜索能力和模拟退火算法的局部搜索能力,在求解复杂优化问题时表现出良好的性能。本文将介绍遗传模拟退火算法的基本原理、流程以及应用场景。
遗传模拟退火算法结合了遗传算法和模拟退火算法的特点,它采用了两个基本操作:遗传操作和模拟退火操作。
遗传模拟退火算法的流程如下:
遗传模拟退火算法可以应用于许多优化问题,特别是那些具有复杂搜索空间的问题。以下是一些常见的应用场景:
以下是关于旅行商问题(TSP)的遗传模拟退火算法的示例代码:
- pythonCopy codeimport random
- import math
- # 城市坐标
- cities = [(1, 1), (2, 3), (5, 2), (7, 3), (4, 6), (6, 8), (9, 6), (8, 4)]
- # 种群大小
- population_size = 50
- # 进化代数
- generation_count = 100
- # 遗传算法参数
- crossover_rate = 0.8
- mutation_rate = 0.02
- # 计算两个城市之间的距离
- def distance(city1, city2):
- return math.sqrt((city1[0] - city2[0]) ** 2 + (city1[1] - city2[1]) ** 2)
- # 计算路径的总距离
- def total_distance(path):
- total = 0
- for i in range(len(path) - 1):
- total += distance(cities[path[i]], cities[path[i + 1]])
- return total
- # 初始化种群
- def initialize_population():
- population = []
- for _ in range(population_size):
- path = list(range(len(cities)))
- random.shuffle(path)
- population.append(path)
- return population
- # 交叉操作
- def crossover(parent1, parent2):
- child = [-1] * len(parent1)
- start = random.randint(0, len(parent1) - 1)
- end = random.randint(0, len(parent1) - 1)
- if start > end:
- start, end = end, start
- for i in range(start, end + 1):
- child[i] = parent1[i]
- j = 0
- for i in range(len(parent2)):
- if child[(end + i) % len(parent2)] == -1:
- while parent2[j] in child:
- j += 1
- child[(end + i) % len(parent2)] = parent2[j]
- j += 1
- return child
- # 变异操作
- def mutation(path):
- index1 = random.randint(0, len(path) - 1)
- index2 = random.randint(0, len(path) - 1)
- path[index1], path[index2] = path[index2], path[index1]
- return path
- # 模拟退火操作
- def simulated_annealing(path):
- temperature = 1000.0
- cooling_rate = 0.95
- while temperature > 0.1:
- new_path = path.copy()
- index1 = random.randint(0, len(new_path) - 1)
- index2 = random.randint(0, len(new_path) - 1)
- new_path[index1], new_path[index2] = new_path[index2], new_path[index1]
- current_distance = total_distance(path)
- new_distance = total_distance(new_path)
- if new_distance < current_distance:
- path = new_path
- else:
- probability = math.exp((current_distance - new_distance) / temperature)
- if random.random() < probability:
- path = new_path
- temperature *= cooling_rate
- return path
- # 遗传模拟退火算法
- def genetic_simulated_annealing():
- population = initialize_population()
- for _ in range(generation_count):
- new_population = []
- # 选择操作
- population.sort(key=lambda path: total_distance(path))
- elite_count = int(population_size * 0.2)
- new_population.extend(population[:elite_count])
- # 交叉操作
- for _ in range(int(population_size * crossover_rate)):
- parent1 = random.choice(population[:elite_count])
- parent2 = random.choice(population)
- child = crossover(parent1, parent2)
- new_population.append(child)
- # 变异操作
- for i in range(len(new_population)):
- if random.random() < mutation_rate:
- new_population[i] = mutation(new_population[i])
- # 模拟退火操作
- for i in range(elite_count, len(new_population)):
- new_population[i] = simulated_annealing(new_population[i])
- population = new_population
- best_path = min(population, key=lambda path: total_distance(path))
- return best_path
- # 执行遗传模拟退火算法并打印结果
- best_path = genetic_simulated_annealing()
- print("最优路径:", best_path)
- print("最优距离:", total_distance(best_path))
以上代码实现了遗传模拟退火算法求解旅行商问题。它通过遗传算法的选择、交叉和变异操作进行全局搜索,通过模拟退火操作进行局部搜索,最终找到最优的旅行路径以访问所有城市。
以下是关于排课问题的遗传算法的示例代码:
- pythonCopy codeimport random
- # 学生名单
- students = ["Alice", "Bob", "Charlie", "David", "Eve", "Frank", "Grace", "Hannah", "Ivy", "Jack"]
- # 课程时间表
- course_schedule = [
- {"course": "Math", "time": "Monday 9:00-10:30"},
- {"course": "English", "time": "Monday 10:45-12:15"},
- {"course": "Physics", "time": "Tuesday 9:00-10:30"},
- {"course": "Chemistry", "time": "Tuesday 10:45-12:15"},
- {"course": "Biology", "time": "Wednesday 9:00-10:30"},
- {"course": "History", "time": "Wednesday 10:45-12:15"},
- {"course": "Geography", "time": "Thursday 9:00-10:30"},
- {"course": "Music", "time": "Thursday 10:45-12:15"},
- {"course": "Art", "time": "Friday 9:00-10:30"},
- {"course": "PE", "time": "Friday 10:45-12:15"}
- ]
- # 种群大小
- population_size = 50
- # 进化代数
- generation_count = 100
- # 遗传算法参数
- crossover_rate = 0.8
- mutation_rate = 0.02
- # 初始化种群
- def initialize_population():
- population = []
- for _ in range(population_size):
- schedule = random.sample(course_schedule, len(course_schedule))
- population.append(schedule)
- return population
- # 计算适应度
- def fitness(schedule):
- conflicts = 0
- for i in range(len(schedule)):
- for j in range(i+1, len(schedule)):
- if schedule[i]["time"] == schedule[j]["time"]:
- conflicts += 1
- return 1 / (conflicts + 1)
- # 选择操作
- def selection(population):
- population.sort(key=lambda schedule: fitness(schedule), reverse=True)
- elite_count = int(population_size * 0.2)
- return population[:elite_count]
- # 交叉操作
- def crossover(parent1, parent2):
- child = []
- for i in range(len(parent1)):
- if random.random() < crossover_rate:
- child.append(parent1[i])
- else:
- child.append(parent2[i])
- return child
- # 变异操作
- def mutation(schedule):
- index1 = random.randint(0, len(schedule) - 1)
- index2 = random.randint(0, len(schedule) - 1)
- schedule[index1], schedule[index2] = schedule[index2], schedule[index1]
- return schedule
- # 遗传算法
- def genetic_algorithm():
- population = initialize_population()
- for _ in range(generation_count):
- new_population = selection(population)
- while len(new_population) < population_size:
- parent1 = random.choice(population)
- parent2 = random.choice(population)
- child = crossover(parent1, parent2)
- if random.random() < mutation_rate:
- child = mutation(child)
- new_population.append(child)
- population = new_population
- best_schedule = max(population, key=lambda schedule: fitness(schedule))
- return best_schedule
- # 执行遗传算法并打印结果
- best_schedule = genetic_algorithm()
- print("最优课程安排:")
- for i in range(len(best_schedule)):
- print(f"学生 {students[i]}: {best_schedule[i]['course']} - {best_schedule[i]['time']}")
以上代码实现了遗传算法求解排课问题。它通过遗传算法的选择、交叉和变异操作进行全局搜索,最终找到最优的课程安排方案,以满足学生与课程时间表之间的冲突最小化。
遗传模拟退火算法是一种结合了遗传算法和模拟退火算法的优化算法,具有全局搜索和局部搜索的能力。它能够应用于各种优化问题,并在复杂搜索空间中表现出良好的性能。在实际应用中,我们可以根据具体问题的特点和需求,调整遗传模拟退火算法的参数和操作,以取得更好的优化效果。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。