赞
踩
该系统利用基于密度的新型聚类算法,对给定用户基于好友推荐。本系统的开发IDE采用eclipse,使用maven构建项目,数据库选用Mysql,后台技术采用Struts2+Hibernate+Spring的架构,前端使用Easyui+Ajax的技术实现前后端的数据交互,算法的主要计算任务用Hadoop Mapreduce来完成。综合来说,本系统面临的主要挑战如下:
本此项目的用户数据源样例如下:
<row Id="-1" Reputation="9" CreationDate="2010-07-28T16:38:27.683" DisplayName="Community" EmailHash="a007be5a61f6aa8f3e85ae2fc18dd66e" LastAccessDate="2010-07-28T16:38:27.683" Location="on the server farm" AboutMe="<p>Hi, I'm not really a person.</p>
<p>I'm a background process that helps keep this site clean!</p>
<p>I do things like</p>
<ul>
<li>Randomly poke old unanswered questions every hour so they get some attention</li>
<li>Own community questions and answers so nobody gets unnecessary reputation from them</li>
<li>Own downvotes on spam/evil posts that get permanently deleted
</ul>" Views="0" UpVotes="142" DownVotes="119" />
<row Id="2" Reputation="101" CreationDate="2010-07-28T17:09:21.300" DisplayName="Geoff Dalgas" EmailHash="b437f461b3fd27387c5d8ab47a293d35" LastAccessDate="2011-09-01T23:16:56.353" WebsiteUrl="http://stackoverflow.com" Location="Corvallis, OR" Age="34" AboutMe="<p>Developer on the StackOverflow team. Find me on</p>

<p><a href="http://www.twitter.com/SuperDalgas" rel="nofollow">Twitter</a>
<br><br>
<a href="http://blog.stackoverflow.com/2009/05/welcome-stack-overflow-valued-associate-00003/" rel="nofollow">Stack Overflow Valued Associate #00003</a> </p>
" Views="25" UpVotes="7" DownVotes="0" />
该数据源是http://stackoverflow.com/ 网站上的用户数据。该网站我就不做介绍了,程序员收藏夹必备网站之一。该网站的网页截图如下:
本次好友推荐系统建立在如下假设上:
针对以上假设,对原始用户数据进行分析,挑选的代表属性如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。