赞
踩
下图,对截短信号周期延拓:
可以看出,此时进行周期延拓得到的信号与原来的正弦信号大相径庭。新的周期信号是一个周期的偶函数,原无限长正弦是一个周期的奇函数,两者奇偶性都不一样了,因此不能指望利用新的信号的DFT求出原信号的初相。exp(-jωt)=cos(ωt)-jsin(ωt),进行变换的时候,若f(t)为实偶函数,则f(t)sin(ωt)就是奇函数,对一个奇函数在对称区间内积分只能得到0,因此实偶函数的傅立叶变换肯定是实的,对一个实数用angle求相位,当然相位是0。而原正弦肯定是初相为-90°。
我想这就是问题所在,DFT就是DFS,只不过DFT先将有限长信号进行周期延拓,然后求DFS,再截取一个周期。
使用DFT,在有限的观测时间内采集信号的信息。如若观测时间内正好得到了整数个正弦周期,则DFT的周期延拓可以不失真的表示原正弦,可是如果观测时间内得到的信号不是整数个周期,那么问题随之而来,就像上面的例子,观测时间内得到了1.5个周期的正弦,然后进行周期延拓,显然乱了套。
如果满足了胡广书老师所总结的抽样条件,则对正弦的DFT谱无疑可以很好地反映初相,我写了两个例子:
第一个例子,信号只包含一个正弦:
t=linspace(0,2-0.125,16);
x=cos(2*pi*t+pi/4);
X=fft(x);
stem(abs(X));
figure;
stem(angle(X)/pi*180);
幅度谱:
相位谱:
可以看见DFT相位谱第三个点对应正弦的相位,刚好是45°。
第二个例子信号中包含两个正弦:
t=linspace(0,2-0.125,16);
x=cos(2*pi*t+pi/4)+2*cos(2*pi*0.5*t+pi/8);
X=fft(x);
stem(abs(X));
figure;
stem(angle(X)/pi*180);
幅度谱:
相位谱:
可以看见DFT相位谱第二个和第三个点对应两个正弦的相位,刚好是22.5°和45°。
如果没有满足上面所说的条件,就会得到不准确的结果,有兴趣可试试下面的代码:
t=linspace(0,2.5-0.125,32);
x=cos(2*pi*t+pi/4);
X=fft(x);
stem(abs(X));
figure;
stem(angle(X)/pi*180);
如何克服这个问题?我觉得这非常困难。在不能预知信号频率的情况下,无法确定采样频率和观测点数。也许可以先进行一次观测,通过幅度谱估计出正弦的频率,然后根据频率调整抽样频率,重新对信号进行采样,使采样符合上面所述的条件。但是这样做有很多的问题,例如硬件可能不好实现。而且虽然第二次调整了采样频率和抽样点数,可是初始相位已经无法得到了,因为第二次采样不可能再从零时刻开始。
Sandygreta同学说可以这样做,先以较高的抽样频率对信号进行采样,通过FFT幅度谱估算出正弦信号的频率,然后计算出满足抽样条件的最佳的抽样频率和观测时间,使抽样频率为正弦频率的整数倍(大于2倍),且观测时间内能正好得到整数个正弦周期。然后对刚才采集的信号样本进行插值,接着使用计算出来的采样频率和观测时间对插值的结果重新采样,计算FFT,得到初始相位。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。