赞
踩
汽车电子中间件是一个关键的软件层,位于汽车应用层和底层操作系统之间,起到了连接和协调不同电子控制单元(ECU)的作用。在汽车电子系统中,应用层和底层操作系统各有侧重,且各自的重要性不容忽视。
应用层主要关注高级功能的实现和用户体验的提升。它包含了各种车载功能,如自动驾驶、车载娱乐系统、导航系统、高级驾驶辅助系统(ADAS)和远程信息处理等。这些应用需要处理大量的数据,进行复杂的算法计算和实时决策。例如,自动驾驶系统需要融合多个传感器的数据(如摄像头、雷达、激光雷达),进行环境感知、路径规划和车辆控制;车载娱乐系统则需要提供流畅的多媒体播放和交互体验。这些应用的开发往往涉及高级编程语言和复杂的软件框架,需要确保高效、可靠和实时的性能。
底层操作系统主要负责硬件资源管理和实时任务调度。它直接与硬件打交道,提供硬件抽象层(HAL),管理CPU、内存、I/O设备等资源,确保系统的稳定性和高效运行。操作系统还需要支持实时特性,确保关键任务能够在严格的时间要求内完成。例如,发动机控制单元(ECU)需要在特定的时间内执行燃油喷射和点火控制,底层操作系统必须保证这些任务的实时性。此外,操作系统还提供基础的安全机制,防止未授权的访问和数据泄露。
什么是汽车软件中间件?
随着汽车应用要求的不断提高,软件总量也随之迅速增长,导致系统的复杂性和成本大幅增加。为提高软件的管理性、移植性、裁剪性和质量,需定义一套架构(Architecture)、方法学(Methodology)和应用接口(Application Interface),以实现标准接口、高质量的无缝集成、高效开发,并通过新的模型来管理复杂系统。目前在汽车控制领域有多种总线标准,各自侧重点不同。尽管总线通信速度不断提升,但尚无通信网络能完全满足未来汽车的所有成本和性能要求。因此,需要兼容多种总线和底层协议的通信协议和规范。
中间件的核心思想在于“统一标准、分散实现、集中配置”。统一标准提供一个通用的开放平台,确保不同厂商的系统和组件能够互操作。分散实现意味着软件系统应层次化、模块化,降低应用与平台之间的耦合度。不同模块可由不同厂商提供,通过标准接口进行集成。而集中配置则是将所有模块的配置信息以统一格式集中管理,确保系统配置的一致性和完整性。
该架构需要满足多项功能需求。首先,必须解决汽车功能的可用性和安全性需求,确保系统可靠运行,并保持一定的冗余,以提升系统的容错能力和可靠性。此外,软件中间件需具备跨平台移植能力,能够在不同汽车的不同平台上运行,实现平台无关性。同时,它需要实现标准的基本系统功能,作为汽车供应商的标准软件模块,并通过网络共享这些功能,以提升系统的协同工作能力。
集成多个开发商提供的软件模块是另一重要功能,这不仅简化了系统开发和维护,还增强了系统的灵活性。为了更好地管理系统生命周期内的维护和更新,软件中间件还需要支持软件更新与升级,保持系统的先进性。同时,充分利用硬件平台的处理能力,提升系统性能,亦是中间件设计的重要目标。
在现代汽车中,电子系统的复杂性日益增加。各种传感器、执行器和控制单元需要高效地协同工作,从而实现诸如自动驾驶、车联网和高级驾驶辅助系统(ADAS)等功能。汽车电子中间件在这个过程中起到了关键作用:
通过以上功能,中间件使得应用层可以更方便地调用底层资源,而底层操作系统也能通过中间件更有效地支持复杂的应用需求,从而实现整个汽车电子系统的协调和优化。这不仅简化了开发过程,还提高了系统的可靠性、可维护性和可扩展性。
随着汽车技术的发展,汽车电子中间件市场也在快速增长。据市场研究报告,预计未来几年中间件市场的年均复合增长率将超过10%。这种增长主要受到以下几个因素的推动:
汽车软件中间件的性能指标涵盖多个方面,包括响应时间、吞吐量、可靠性、安全性、资源利用率和可移植性等。以下是各个性能指标的详细解释及其在不同使用场景下的定量数据:
响应时间是指系统对外部事件作出反应所需的时间。在汽车电子系统中,响应时间的要求因应用场景而异:
这些系统需要实时处理传感器数据,响应时间必须在毫秒级。典型的要求是:
用户交互的响应时间较为宽松,一般在几百毫秒内即可:
吞吐量是指单位时间内系统处理的任务或数据量。在不同场景下的要求如下:
CAN总线:1 Mbps
Ethernet:100 Mbps或更高
车联网(V2X)通信:需要处理大量车辆之间的数据交换,数据吞吐量:> 1 Gbps
可靠性衡量系统在无故障情况下运行的能力,通常用故障间隔时间(MTBF)和故障恢复时间(MTTR)表示:
自动驾驶系统:
MTBF:> 10,000 小时
MTTR:< 1 小时
车载娱乐系统:
MTBF:> 5,000 小时
MTTR:< 2 小时
安全性指标包括数据加密、身份认证和访问控制等:
资源利用率指系统对CPU、内存和其他硬件资源的使用效率:
可移植性衡量软件在不同硬件平台上的运行能力:
通过这些定量指标,可以更具体地评估和优化汽车软件中间件的性能,以满足不同应用场景的需求。
以下是几种典型的汽车电子中间件,它们在各自的优劣、市场占有率以及量产应用方面各有特点:
AUTOSAR(Automotive Open System Architecture)是目前应用最广泛的车载电子系统标准规范,主要包括Classic Platform(CP)和Adaptive Platform(AP)两大平台:
专注于传统车载控制嵌入式系统,具有严格的实时性和安全性要求。它从底层到应用层可分为微控制器、基础软件层、运行环境层和应用软件层,主要支持8位、16位、32位MCU,适用于车身控制、底盘控制和动力系统等功能。
针对未来自动驾驶和车联网等高性能应用提出的新型汽车电子系统架构,采用基于POSIX标准的操作系统,支持面向对象的开发,主要用于自动驾驶、环境感知和高算力需求的场景。AP支持64位以上的高性能处理器(MPU/SOC),适用于高算力需求的自动驾驶系统。
AUTOSAR在传统汽车电子系统中占据主导地位,尤其是在动力系统、安全系统等关键控制领域。
AUTOSAR已经被广泛应用于多个量产车型中,尤其是传统汽车的ECU(电子控制单元)系统中。
ROS2在科研和自动驾驶初创企业中占有较高比例,但在传统车厂中的应用仍在推广和验证中。
ROS2在一些新兴的自动驾驶项目中开始应用,但尚未大规模进入传统量产车型。
CyberRT主要在百度Apollo项目中应用,是其自动驾驶平台的核心中间件。
主要用于百度Apollo的自动驾驶项目中,包括一些与合作伙伴的量产计划,但整体市场占有率相对较低。
Iceoryx是博世子公司ETAS推出的中间件,专注于高级自动驾驶应用。它支持多种操作系统(如Linux、macOS和QNX),兼容ROS2和AUTOSAR AP接口。Iceoryx的核心优势在于其“零拷贝”内存共享技术,减少了数据传输中的内存占用和延迟。
目前主要在一些前沿自动驾驶研究项目中应用,量产车中尚未广泛普及。
SOME/IP在车载网络通信中占据较高市场份额,特别是在高端车型的以太网通信中。
广泛应用于量产车型中的车载以太网系统中,如奔驰、宝马等高端品牌。
DDS在工业自动化、航空航天等高实时性需求的领域占据较高市场份额,汽车领域的应用在快速增长。
在一些自动驾驶和先进驾驶辅助系统(ADAS)项目中开始应用,但尚未广泛应用于传统量产车型。
总结而言,不同中间件在汽车电子领域各有优势,市场占有情况和量产应用也各有侧重。AUTOSAR是传统汽车电子系统的主流选择,而ROS2、CyberRT和Iceoryx则更多应用于新兴的自动驾驶和高性能计算领域。SOME/IP和DDS则在车载通信和分布式系统中各具特色。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。