赞
踩
目录
函数接口:
LambdaLR(optimizer, lr_lambda, last_epoch=-1, verbose=False)
更新策略:
其中 是得到的新的学习率,是初始的学习率, λ是通过参数lr_lambda和epoch得到的。
参数:
optimizer (Optimizer):要更改学习率的优化器;
lr_lambda(function or list):可以为一个lambda函数,也可以传入列表;
last_epoch (int):最后一个epoch的index,如果是训练了很多个epoch后中断了,继续训练,这个值就等于加载的模型的epoch。默认为-1表示从头开始训练,即从epoch=1开始。
verbose(bool):如果未True,则打印输出信息对于每次更新,反之亦然。默认为False。
- import torch
- import torch.nn as nn
- from torch.optim.lr_scheduler import LambdaLR
-
- initial_lr = 0.1
-
- class model(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3)
-
- def forward(self, x):
- pass
-
- net_1 = model()
-
- optimizer_1 = torch.optim.SGD(net_1.parameters(), lr = initial_lr)
- print(optimizer_1)
- scheduler_1 = LambdaLR(optimizer_1, lr_lambda=lambda epoch: 1/(epoch+1))
-
- print("初始化的学习率:", optimizer_1.defaults['lr'])
-
- for epoch in range(1, 11):
- # train
-
- optimizer_1.zero_grad()
- optimizer_1.step()
- print("*-------------------------------------------------------*")
- print("更新前,epoch = %d lr = %f" % (epoch, optimizer_1.param_groups[0]['lr']))
- scheduler_1.step()
- print("更新后,epoch = %d lr = %f" % (epoch + 1, optimizer_1.param_groups[0]['lr']))
- print("更新后,epoch = %d lr = %f" % (epoch + 1, (1/(epoch+1))*initial_lr))
- print("*-------------------------------------------------------*")
- SGD (
- Parameter Group 0
- dampening: 0
- lr: 0.1
- momentum: 0
- nesterov: False
- weight_decay: 0
- )
- 初始化的学习率: 0.1
- *-------------------------------------------------------*
- 更新前,epoch = 1 lr = 0.100000
- 更新后,epoch = 2 lr = 0.050000
- 更新后,epoch = 2 lr = 0.050000
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 2 lr = 0.050000
- 更新后,epoch = 3 lr = 0.033333
- 更新后,epoch = 3 lr = 0.033333
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 3 lr = 0.033333
- 更新后,epoch = 4 lr = 0.025000
- 更新后,epoch = 4 lr = 0.025000
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 4 lr = 0.025000
- 更新后,epoch = 5 lr = 0.020000
- 更新后,epoch = 5 lr = 0.020000
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 5 lr = 0.020000
- 更新后,epoch = 6 lr = 0.016667
- 更新后,epoch = 6 lr = 0.016667
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 6 lr = 0.016667
- 更新后,epoch = 7 lr = 0.014286
- 更新后,epoch = 7 lr = 0.014286
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 7 lr = 0.014286
- 更新后,epoch = 8 lr = 0.012500
- 更新后,epoch = 8 lr = 0.012500
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 8 lr = 0.012500
- 更新后,epoch = 9 lr = 0.011111
- 更新后,epoch = 9 lr = 0.011111
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 9 lr = 0.011111
- 更新后,epoch = 10 lr = 0.010000
- 更新后,epoch = 10 lr = 0.010000
- *-------------------------------------------------------*
- *-------------------------------------------------------*
- 更新前,epoch = 10 lr = 0.010000
- 更新后,epoch = 11 lr = 0.009091
- 更新后,epoch = 11 lr = 0.009091
- *-------------------------------------------------------*
- import cv2
- import torch.nn as nn
- import torch
- from torchvision.models import AlexNet
- import matplotlib.pyplot as plt
- from torch.optim.lr_scheduler import LambdaLR
- import math
-
- total_steps = 300
-
- # 自定义函数OneCycleLR
- def one_cycle(y1=0.0, y2=1.0, steps=100):
- # lambda function for sinusoidal ramp from y1 to y2
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
-
- lf = one_cycle(1, 0.2, total_steps) # cosine 1->hyp['lrf']
-
- lr = 0.001
- # pytorch函数OneCycleLR
- lrs = []
- steps = []
- model = AlexNet(num_classes=20)
- optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
-
- scheduler =torch.optim.lr_scheduler.OneCycleLR(optimizer,max_lr=0.001,total_steps=total_steps,
- verbose=False)
-
- # 自定义函数OneCycleLR与LambdaLR结合使用
- lrs1 = []
- steps1 = []
- model1 = AlexNet(num_classes=20)
- optimizer1 = torch.optim.SGD(model.parameters(), lr=lr, momentum=0.9)
- scheduler1 = LambdaLR(optimizer1, lr_lambda=lf)
-
-
- for epoch in range(total_steps):
- scheduler1.step()
- lrs1.append(scheduler1.get_lr()[0])
- steps1.append(epoch)
-
- scheduler.step()
- lrs.append(scheduler.get_lr()[0])
- steps.append(epoch)
-
- print("custom OneCycleLR: ",scheduler1.get_lr()[0],
- "pytorch OneCycleLR: ",scheduler.get_lr()[0])
-
- plt.figure()
- plt.legend()
- plt.plot(steps, lrs, color='black', marker='',label='pytorch')
-
- plt.plot(steps1, lrs1, color='red', marker='',label='custom')
-
- plt.savefig("OneCycleLR.png")
- custom OneCycleLR: 0.000999978067746205 pytorch OneCycleLR: 4.029901011425041e-05
- custom OneCycleLR: 0.0009999122733899382 pytorch OneCycleLR: 4.1195667927633396e-05
- custom OneCycleLR: 0.0009998026241462925 pytorch OneCycleLR: 4.268885631616862e-05
- custom OneCycleLR: 0.0009996491320395434 pytorch OneCycleLR: 4.477671495306198e-05
- custom OneCycleLR: 0.0009994518139018296 pytorch OneCycleLR: 4.745664262643999e-05
- custom OneCycleLR: 0.0009992106913713087 pytorch OneCycleLR: 5.072530048013703e-05
- custom OneCycleLR: 0.0009989257908897833 pytorch OneCycleLR: 5.4578616173493744e-05
- custom OneCycleLR: 0.0009985971436998018 pytorch OneCycleLR: 5.901178895498596e-05
- custom OneCycleLR: 0.000998224785841232 pytorch OneCycleLR: 6.40192956433644e-05
- custom OneCycleLR: 0.0009978087581473092 pytorch OneCycleLR: 6.959489750884987e-05
- custom OneCycleLR: 0.0009973491062401586 pytorch OneCycleLR: 7.573164804581384e-05
- custom OneCycleLR: 0.0009968458805257913 pytorch OneCycleLR: 8.242190162726e-05
- custom OneCycleLR: 0.0009962991361885775 pytorch OneCycleLR: 8.965732303032237e-05
- custom OneCycleLR: 0.0009957089331851954 pytorch OneCycleLR: 9.742889782091613e-05
- custom OneCycleLR: 0.0009950753362380552 pytorch OneCycleLR: 0.00010572694358459967
- custom OneCycleLR: 0.000994398414828202 pytorch OneCycleLR: 0.00011454112198965667
- custom OneCycleLR: 0.0009936782431876968 pytorch OneCycleLR: 0.00012386045166737076
- custom OneCycleLR: 0.0009929149002914754 pytorch OneCycleLR: 0.0001336733218934436
- custom OneCycleLR: 0.0009921084698486888 pytorch OneCycleLR: 0.00014396750705351078
- custom OneCycleLR: 0.0009912590402935224 pytorch OneCycleLR: 0.0001547301818747355
- custom OneCycleLR: 0.000990366704775499 pytorch OneCycleLR: 0.0001659479374045014
- custom OneCycleLR: 0.0009894315611492642 pytorch OneCycleLR: 0.0001776067977162975
- custom OneCycleLR: 0.0009884537119638544 pytorch OneCycleLR: 0.00018969223732198301
- custom OneCycleLR: 0.0009874332644514525 pytorch OneCycleLR: 0.0002021891992687357
- custom OneCycleLR: 0.0009863703305156273 pytorch OneCycleLR: 0.00021508211389814147
- custom OneCycleLR: 0.0009852650267190633 pytorch OneCycleLR: 0.00022835491824404845
- custom OneCycleLR: 0.0009841174742707772 pytorch OneCycleLR: 0.000241991076045024
- custom OneCycleLR: 0.000982927799012827 pytorch OneCycleLR: 0.00025597359834647615
- custom OneCycleLR: 0.0009816961314065109 pytorch OneCycleLR: 0.0002702850646667766
- custom OneCycleLR: 0.0009804226065180616 pytorch OneCycleLR: 0.0002849076447010104
- custom OneCycleLR: 0.0009791073640038343 pytorch OneCycleLR: 0.0002998231205353166
- custom OneCycleLR: 0.0009777505480949925 pytorch OneCycleLR: 0.0003150129093441395
- custom OneCycleLR: 0.0009763523075816903 pytorch OneCycleLR: 0.0003304580865421162
- custom OneCycleLR: 0.0009749127957967566 pytorch OneCycleLR: 0.00034613940936175237
- custom OneCycleLR: 0.0009734321705988807 pytorch OneCycleLR: 0.00036203734082751525
- custom OneCycleLR: 0.0009719105943553006 pytorch OneCycleLR: 0.00037813207409647157
- custom OneCycleLR: 0.000970348233923998 pytorch OneCycleLR: 0.00039440355713514844
- custom OneCycleLR: 0.0009687452606354002 pytorch OneCycleLR: 0.00041083151770186885
- custom OneCycleLR: 0.0009671018502735925 pytorch OneCycleLR: 0.00042739548860344146
- custom OneCycleLR: 0.0009654181830570403 pytorch OneCycleLR: 0.00044407483319473405
- custom OneCycleLR: 0.0009636944436188274 pytorch OneCycleLR: 0.00046084877108936394
- custom OneCycleLR: 0.0009619308209864078 pytorch OneCycleLR: 0.0004776964040494711
- custom OneCycleLR: 0.0009601275085608774 pytorch OneCycleLR: 0.0004945967420223218
- custom OneCycleLR: 0.0009582847040957652 pytorch OneCycleLR: 0.0005115287292912982
- custom OneCycleLR: 0.0009564026096753472 pytorch OneCycleLR: 0.0005284712707087017
- custom OneCycleLR: 0.0009544814316924859 pytorch OneCycleLR: 0.0005454032579776784
- custom OneCycleLR: 0.0009525213808259969 pytorch OneCycleLR: 0.0005623035959505287
- custom OneCycleLR: 0.0009505226720175455 pytorch OneCycleLR: 0.0005791512289106361
- custom OneCycleLR: 0.0009484855244480758 pytorch OneCycleLR: 0.000595925166805266
- custom OneCycleLR: 0.0009464101615137755 pytorch OneCycleLR: 0.0006126045113965584
- custom OneCycleLR: 0.0009442968108015775 pytorch OneCycleLR: 0.000629168482298131
- custom OneCycleLR: 0.0009421457040642026 pytorch OneCycleLR: 0.0006455964428648515
- custom OneCycleLR: 0.0009399570771947457 pytorch OneCycleLR: 0.0006618679259035283
- custom OneCycleLR: 0.0009377311702008061 pytorch OneCycleLR: 0.0006779626591724849
- custom OneCycleLR: 0.0009354682271781696 pytorch OneCycleLR: 0.0006938605906382474
- custom OneCycleLR: 0.0009331684962840398 pytorch OneCycleLR: 0.0007095419134578837
- custom OneCycleLR: 0.0009308322297098248 pytorch OneCycleLR: 0.0007249870906558605
- custom OneCycleLR: 0.0009284596836534817 pytorch OneCycleLR: 0.0007401768794646835
- custom OneCycleLR: 0.0009260511182914218 pytorch OneCycleLR: 0.0007550923552989896
- custom OneCycleLR: 0.000923606797749979 pytorch OneCycleLR: 0.0007697149353332234
- custom OneCycleLR: 0.0009211269900764458 pytorch OneCycleLR: 0.0007840264016535239
- custom OneCycleLR: 0.0009186119672096785 pytorch OneCycleLR: 0.0007980089239549761
- custom OneCycleLR: 0.0009160620049502761 pytorch OneCycleLR: 0.0008116450817559515
- custom OneCycleLR: 0.000913477382930336 pytorch OneCycleLR: 0.0008249178861018585
- custom OneCycleLR: 0.0009108583845827883 pytorch OneCycleLR: 0.0008378108007312642
- custom OneCycleLR: 0.0009082052971103158 pytorch OneCycleLR: 0.000850307762678017
- custom OneCycleLR: 0.0009055184114538569 pytorch OneCycleLR: 0.0008623932022837024
- custom OneCycleLR: 0.0009027980222607026 pytorch OneCycleLR: 0.0008740520625954986
- custom OneCycleLR: 0.0009000444278521839 pytorch OneCycleLR: 0.0008852698181252645
- custom OneCycleLR: 0.0008972579301909578 pytorch OneCycleLR: 0.0008960324929464892
- custom OneCycleLR: 0.0008944388348478938 pytorch OneCycleLR: 0.0009063266781065563
- custom OneCycleLR: 0.0008915874509685647 pytorch OneCycleLR: 0.0009161395483326291
- custom OneCycleLR: 0.0008887040912393449 pytorch OneCycleLR: 0.0009254588780103433
- custom OneCycleLR: 0.0008857890718531214 pytorch OneCycleLR: 0.0009342730564154004
- custom OneCycleLR: 0.000882842712474619 pytorch OneCycleLR: 0.0009425711021790838
- custom OneCycleLR: 0.0008798653362053463 pytorch OneCycleLR: 0.0009503426769696777
- custom OneCycleLR: 0.0008768572695481627 pytorch OneCycleLR: 0.00095757809837274
- custom OneCycleLR: 0.0008738188423714755 pytorch OneCycleLR: 0.0009642683519541861
- custom OneCycleLR: 0.0008707503878730643 pytorch OneCycleLR: 0.0009704051024911501
- custom OneCycleLR: 0.0008676522425435433 pytorch OneCycleLR: 0.0009759807043566356
- custom OneCycleLR: 0.0008645247461294607 pytorch OneCycleLR: 0.000980988211045014
- custom OneCycleLR: 0.0008613682415960422 pytorch OneCycleLR: 0.0009854213838265064
- custom OneCycleLR: 0.0008581830750895803 pytorch OneCycleLR: 0.0009892746995198629
- custom OneCycleLR: 0.0008549695958994758 pytorch OneCycleLR: 0.00099254335737356
- custom OneCycleLR: 0.0008517281564199351 pytorch OneCycleLR: 0.000995223285046938
- custom OneCycleLR: 0.0008484591121113242 pytorch OneCycleLR: 0.0009973111436838314
- custom OneCycleLR: 0.0008451628214611906 pytorch OneCycleLR: 0.0009988043320723666
- custom OneCycleLR: 0.00084183964594495 pytorch OneCycleLR: 0.0009997009898857496
- custom OneCycleLR: 0.0008384899499862462 pytorch OneCycleLR: 0.001
- custom OneCycleLR: 0.0008351141009169893 pytorch OneCycleLR: 0.0009999440511289331
- custom OneCycleLR: 0.0008317124689370715 pytorch OneCycleLR: 0.0009997762170368871
- custom OneCycleLR: 0.0008282854270737727 pytorch OneCycleLR: 0.0009994965352845243
- custom OneCycleLR: 0.0008248333511408524 pytorch OneCycleLR: 0.000999105068463608
- custom OneCycleLR: 0.0008213566196973377 pytorch OneCycleLR: 0.0009986019041829956
- custom OneCycleLR: 0.0008178556140060108 pytorch OneCycleLR: 0.0009979871550490316
- custom OneCycleLR: 0.0008143307179915986 pytorch OneCycleLR: 0.000997260958640346
- custom OneCycleLR: 0.0008107823181986711 pytorch OneCycleLR: 0.000996423477477066
- custom OneCycleLR: 0.0008072108037492522 pytorch OneCycleLR: 0.0009954748989844438
- custom OneCycleLR: 0.0008036165663001484 pytorch OneCycleLR: 0.0009944154354509117
- custom OneCycleLR: 0.0007999999999999999 pytorch OneCycleLR: 0.0009932453239805729
- custom OneCycleLR: 0.0007963615014460563 pytorch OneCycleLR: 0.0009919648264401376
- custom OneCycleLR: 0.0007927014696406861 pytorch OneCycleLR: 0.0009905742294003194
- custom OneCycleLR: 0.0007890203059476216 pytorch OneCycleLR: 0.0009890738440717015
- custom OneCycleLR: 0.0007853184140479448 pytorch OneCycleLR: 0.0009874640062350875
- custom OneCycleLR: 0.0007815961998958187 pytorch OneCycleLR: 0.0009857450761663572
- custom OneCycleLR: 0.000777854071673971 pytorch OneCycleLR: 0.0009839174385558363
- custom OneCycleLR: 0.000774092439748931 pytorch OneCycleLR: 0.0009819815024222052
- custom OneCycleLR: 0.000770311716626029 pytorch OneCycleLR: 0.0009799377010209615
- custom OneCycleLR: 0.0007665123169041606 pytorch OneCycleLR: 0.0009777864917474587
- custom OneCycleLR: 0.00076269465723032 pytorch OneCycleLR: 0.0009755283560345441
- custom OneCycleLR: 0.0007588591562539122 pytorch OneCycleLR: 0.0009731637992448144
- custom OneCycleLR: 0.0007550062345808412 pytorch OneCycleLR: 0.0009706933505575182
- custom OneCycleLR: 0.0007511363147273869 pytorch OneCycleLR: 0.0009681175628501272
- custom OneCycleLR: 0.0007472498210738712 pytorch OneCycleLR: 0.0009654370125746047
- custom OneCycleLR: 0.00074334717981812 pytorch OneCycleLR: 0.0009626522996283973
- custom OneCycleLR: 0.0007394288189287261 pytorch OneCycleLR: 0.0009597640472201802
- custom OneCycleLR: 0.0007354951680981166 pytorch OneCycleLR: 0.000956772901730385
- custom OneCycleLR: 0.0007315466586954334 pytorch OneCycleLR: 0.0009536795325665432
- custom OneCycleLR: 0.000727583723719228 pytorch OneCycleLR: 0.0009504846320134736
- custom OneCycleLR: 0.0007236067977499789 pytorch OneCycleLR: 0.000947188915078353
- custom OneCycleLR: 0.0007196163169024347 pytorch OneCycleLR: 0.000943793119330699
- custom OneCycleLR: 0.0007156127187777885 pytorch OneCycleLR: 0.0009402980047373052
- custom OneCycleLR: 0.0007115964424156918 pytorch OneCycleLR: 0.0009367043534921636
- custom OneCycleLR: 0.0007075679282461063 pytorch OneCycleLR: 0.0009330129698414117
- custom OneCycleLR: 0.0007035276180410084 pytorch OneCycleLR: 0.0009292246799033457
- custom OneCycleLR: 0.0006994759548659419 pytorch OneCycleLR: 0.0009253403314835384
- custom OneCycleLR: 0.0006954133830314323 pytorch OneCycleLR: 0.0009213607938851022
- custom OneCycleLR: 0.0006913403480442624 pytorch OneCycleLR: 0.0009172869577141438
- custom OneCycleLR: 0.000687257296558617 pytorch OneCycleLR: 0.0009131197346804487
- custom OneCycleLR: 0.0006831646763271038 pytorch OneCycleLR: 0.0009088600573934443
- custom OneCycleLR: 0.0006790629361516505 pytorch OneCycleLR: 0.0009045088791534849
- custom OneCycleLR: 0.0006749525258342899 pytorch OneCycleLR: 0.0009000671737385071
- custom OneCycleLR: 0.0006708338961278333 pytorch OneCycleLR: 0.0008955359351861013
- custom OneCycleLR: 0.000666707498686441 pytorch OneCycleLR: 0.0008909161775710499
- custom OneCycleLR: 0.0006625737860160923 pytorch OneCycleLR: 0.0008862089347783812
- custom OneCycleLR: 0.0006584332114249647 pytorch OneCycleLR: 0.0008814152602719894
- custom OneCycleLR: 0.0006542862289737217 pytorch OneCycleLR: 0.0008765362268588734
- custom OneCycleLR: 0.0006501332934257217 pytorch OneCycleLR: 0.0008715729264490461
- custom OneCycleLR: 0.0006459748601971467 pytorch OneCycleLR: 0.0008665264698111694
- custom OneCycleLR: 0.0006418113853070615 pytorch OneCycleLR: 0.000861397986323968
- custom OneCycleLR: 0.0006376433253274059 pytorch OneCycleLR: 0.0008561886237234785
- custom OneCycleLR: 0.0006334711373329262 pytorch OneCycleLR: 0.00085089954784619
- custom OneCycleLR: 0.0006292952788510527 pytorch OneCycleLR: 0.0008455319423681343
- custom OneCycleLR: 0.0006251162078117254 pytorch OneCycleLR: 0.000840087008539984
- custom OneCycleLR: 0.0006209343824971776 pytorch OneCycleLR: 0.0008345659649182163
- custom OneCycleLR: 0.0006167502614916799 pytorch OneCycleLR: 0.0008289700470924044
- custom OneCycleLR: 0.0006125643036312512 pytorch OneCycleLR: 0.0008233005074086972
- custom OneCycleLR: 0.0006083769679533429 pytorch OneCycleLR: 0.0008175586146895496
- custom OneCycleLR: 0.0006041887136464983 pytorch OneCycleLR: 0.000811745653949763
- custom OneCycleLR: 0.0006000000000000001 pytorch OneCycleLR: 0.0008058629261089048
- custom OneCycleLR: 0.0005958112863535017 pytorch OneCycleLR: 0.0007999117477001675
- custom OneCycleLR: 0.0005916230320466573 pytorch OneCycleLR: 0.0007938934505757319
- custom OneCycleLR: 0.0005874356963687486 pytorch OneCycleLR: 0.0007878093816087053
- custom OneCycleLR: 0.0005832497385083202 pytorch OneCycleLR: 0.0007816609023916948
- custom OneCycleLR: 0.0005790656175028224 pytorch OneCycleLR: 0.0007754493889320882
- custom OneCycleLR: 0.0005748837921882747 pytorch OneCycleLR: 0.0007691762313441089
- custom OneCycleLR: 0.0005707047211489473 pytorch OneCycleLR: 0.0007628428335377126
- custom OneCycleLR: 0.0005665288626670737 pytorch OneCycleLR: 0.0007564506129043982
- custom OneCycleLR: 0.0005623566746725943 pytorch OneCycleLR: 0.0007500009999999999
- custom OneCycleLR: 0.0005581886146929387 pytorch OneCycleLR: 0.0007434954382245347
- custom OneCycleLR: 0.0005540251398028534 pytorch OneCycleLR: 0.0007369353834991743
- custom OneCycleLR: 0.0005498667065742782 pytorch OneCycleLR: 0.0007303223039404152
- custom OneCycleLR: 0.0005457137710262783 pytorch OneCycleLR: 0.0007236576795315195
- custom OneCycleLR: 0.0005415667885750355 pytorch OneCycleLR: 0.0007169430017913008
- custom OneCycleLR: 0.0005374262139839078 pytorch OneCycleLR: 0.0007101797734403261
- custom OneCycleLR: 0.000533292501313559 pytorch OneCycleLR: 0.000703369508064614
- custom OneCycleLR: 0.0005291661038721667 pytorch OneCycleLR: 0.0006965137297768985
- custom OneCycleLR: 0.0005250474741657101 pytorch OneCycleLR: 0.0006896139728755389
- custom OneCycleLR: 0.0005209370638483495 pytorch OneCycleLR: 0.0006826717815011488
- custom OneCycleLR: 0.0005168353236728962 pytorch OneCycleLR: 0.0006756887092910232
- custom OneCycleLR: 0.000512742703441383 pytorch OneCycleLR: 0.0006686663190314402
- custom OneCycleLR: 0.0005086596519557378 pytorch OneCycleLR: 0.0006616061823079151
- custom OneCycleLR: 0.0005045866169685678 pytorch OneCycleLR: 0.0006545098791534849
- custom OneCycleLR: 0.0005005240451340582 pytorch OneCycleLR: 0.0006473789976951033
- custom OneCycleLR: 0.0004964723819589916 pytorch OneCycleLR: 0.0006402151337982227
- custom OneCycleLR: 0.0004924320717538938 pytorch OneCycleLR: 0.0006330198907096463
- custom OneCycleLR: 0.0004884035575843083 pytorch OneCycleLR: 0.0006257948786987268
- custom OneCycleLR: 0.00048438728122221134 pytorch OneCycleLR: 0.0006185417146969932
- custom OneCycleLR: 0.0004803836830975653 pytorch OneCycleLR: 0.0006112620219362892
- custom OneCycleLR: 0.000476393202250021 pytorch OneCycleLR: 0.0006039574295854978
- custom OneCycleLR: 0.0004724162762807721 pytorch OneCycleLR: 0.0005966295723859409
- custom OneCycleLR: 0.0004684533413045667 pytorch OneCycleLR: 0.0005892800902855287
- custom OneCycleLR: 0.0004645048319018834 pytorch OneCycleLR: 0.0005819106280717459
- custom OneCycleLR: 0.0004605711810712739 pytorch OneCycleLR: 0.0005745228350035547
- custom OneCycleLR: 0.0004566528201818799 pytorch OneCycleLR: 0.000567118364442296
- custom OneCycleLR: 0.00045275017892612893 pytorch OneCycleLR: 0.0005596988734816729
- custom OneCycleLR: 0.0004488636852726131 pytorch OneCycleLR: 0.0005522660225769001
- custom OneCycleLR: 0.0004449937654191588 pytorch OneCycleLR: 0.0005448214751730989
- custom OneCycleLR: 0.00044114084374608767 pytorch OneCycleLR: 0.0005373668973330249
- custom OneCycleLR: 0.0004373053427696799 pytorch OneCycleLR: 0.0005299039573642091
- custom OneCycleLR: 0.00043348768309583953 pytorch OneCycleLR: 0.0005224343254455967
- custom OneCycleLR: 0.00042968828337397095 pytorch OneCycleLR: 0.0005149596732537669
- custom OneCycleLR: 0.000425907560251069 pytorch OneCycleLR: 0.0005074816735888177
- custom OneCycleLR: 0.0004221459283260291 pytorch OneCycleLR: 0.0005000019999999999
- custom OneCycleLR: 0.00041840380010418134 pytorch OneCycleLR: 0.0004925223264111823
- custom OneCycleLR: 0.0004146815859520554 pytorch OneCycleLR: 0.0004850443267462332
- custom OneCycleLR: 0.00041097969405237846 pytorch OneCycleLR: 0.0004775696745544034
- custom OneCycleLR: 0.00040729853035931387 pytorch OneCycleLR: 0.0004701000426357908
- custom OneCycleLR: 0.0004036384985539436 pytorch OneCycleLR: 0.00046263710266697503
- custom OneCycleLR: 0.0003999999999999999 pytorch OneCycleLR: 0.0004551825248269011
- custom OneCycleLR: 0.0003963834336998514 pytorch OneCycleLR: 0.0004477379774230999
- custom OneCycleLR: 0.00039278919625074796 pytorch OneCycleLR: 0.000440305126518327
- custom OneCycleLR: 0.000389217681801329 pytorch OneCycleLR: 0.00043288563555770405
- custom OneCycleLR: 0.00038566928200840133 pytorch OneCycleLR: 0.00042548116499644507
- custom OneCycleLR: 0.00038214438599398927 pytorch OneCycleLR: 0.00041809337192825395
- custom OneCycleLR: 0.0003786433803026623 pytorch OneCycleLR: 0.0004107239097144713
- custom OneCycleLR: 0.00037516664885914785 pytorch OneCycleLR: 0.00040337442761405903
- custom OneCycleLR: 0.00037171457292622733 pytorch OneCycleLR: 0.00039604657041450203
- custom OneCycleLR: 0.00036828753106292835 pytorch OneCycleLR: 0.00038874197806371076
- custom OneCycleLR: 0.00036488589908301085 pytorch OneCycleLR: 0.00038146228530300675
- custom OneCycleLR: 0.0003615100500137536 pytorch OneCycleLR: 0.00037420912130127325
- custom OneCycleLR: 0.00035816035405505 pytorch OneCycleLR: 0.0003669841092903536
- custom OneCycleLR: 0.0003548371785388095 pytorch OneCycleLR: 0.0003597888662017773
- custom OneCycleLR: 0.0003515408878886759 pytorch OneCycleLR: 0.0003526250023048967
- custom OneCycleLR: 0.00034827184358006505 pytorch OneCycleLR: 0.0003454941208465151
- custom OneCycleLR: 0.0003450304041005241 pytorch OneCycleLR: 0.000338397817692085
- custom OneCycleLR: 0.00034181692491041984 pytorch OneCycleLR: 0.00033133768096855977
- custom OneCycleLR: 0.0003386317584039579 pytorch OneCycleLR: 0.00032431529070897674
- custom OneCycleLR: 0.00033547525387053913 pytorch OneCycleLR: 0.0003173322184988512
- custom OneCycleLR: 0.00033234775745645664 pytorch OneCycleLR: 0.0003103900271244611
- custom OneCycleLR: 0.0003292496121269357 pytorch OneCycleLR: 0.00030349027022310155
- custom OneCycleLR: 0.00032618115762852453 pytorch OneCycleLR: 0.00029663449193538614
- custom OneCycleLR: 0.0003231427304518373 pytorch OneCycleLR: 0.00028982422655967396
- custom OneCycleLR: 0.0003201346637946537 pytorch OneCycleLR: 0.0002830609982086992
- custom OneCycleLR: 0.000317157287525381 pytorch OneCycleLR: 0.00027634632046848027
- custom OneCycleLR: 0.0003142109281468787 pytorch OneCycleLR: 0.00026968169605958483
- custom OneCycleLR: 0.00031129590876065506 pytorch OneCycleLR: 0.00026306861650082563
- custom OneCycleLR: 0.00030841254903143543 pytorch OneCycleLR: 0.00025650856177546514
- custom OneCycleLR: 0.0003055611651521063 pytorch OneCycleLR: 0.0002500030000000001
- custom OneCycleLR: 0.00030274206980904217 pytorch OneCycleLR: 0.00024355338709560175
- custom OneCycleLR: 0.00029995557214781613 pytorch OneCycleLR: 0.00023716116646228723
- custom OneCycleLR: 0.0002972019777392974 pytorch OneCycleLR: 0.00023082776865589112
- custom OneCycleLR: 0.00029448158854614306 pytorch OneCycleLR: 0.0002245546110679117
- custom OneCycleLR: 0.00029179470288968434 pytorch OneCycleLR: 0.00021834309760830508
- custom OneCycleLR: 0.00028914161541721163 pytorch OneCycleLR: 0.00021219461839129468
- custom OneCycleLR: 0.00028652261706966397 pytorch OneCycleLR: 0.00020611054942426806
- custom OneCycleLR: 0.0002839379950497238 pytorch OneCycleLR: 0.00020009225229983252
- custom OneCycleLR: 0.00028138803279032144 pytorch OneCycleLR: 0.00019414107389109498
- custom OneCycleLR: 0.00027887300992355423 pytorch OneCycleLR: 0.00018825834605023698
- custom OneCycleLR: 0.000276393202250021 pytorch OneCycleLR: 0.0001824453853104503
- custom OneCycleLR: 0.00027394888170857826 pytorch OneCycleLR: 0.0001767034925913027
- custom OneCycleLR: 0.00027154031634651834 pytorch OneCycleLR: 0.0001710339529075956
- custom OneCycleLR: 0.00026916777029017513 pytorch OneCycleLR: 0.00016543803508178376
- custom OneCycleLR: 0.0002668315037159602 pytorch OneCycleLR: 0.00015991699146001575
- custom OneCycleLR: 0.0002645317728218304 pytorch OneCycleLR: 0.00015447205763186565
- custom OneCycleLR: 0.000262268829799194 pytorch OneCycleLR: 0.00014910445215381003
- custom OneCycleLR: 0.00026004292280525445 pytorch OneCycleLR: 0.0001438153762765216
- custom OneCycleLR: 0.00025785429593579726 pytorch OneCycleLR: 0.00013860601367603193
- custom OneCycleLR: 0.00025570318919842253 pytorch OneCycleLR: 0.0001334775301888306
- custom OneCycleLR: 0.00025358983848622465 pytorch OneCycleLR: 0.00012843107355095377
- custom OneCycleLR: 0.00025151447555192406 pytorch OneCycleLR: 0.00012346777314112658
- custom OneCycleLR: 0.0002494773279824546 pytorch OneCycleLR: 0.00011858873972801045
- custom OneCycleLR: 0.00024747861917400317 pytorch OneCycleLR: 0.00011379506522161873
- custom OneCycleLR: 0.0002455185683075141 pytorch OneCycleLR: 0.00010908782242895002
- custom OneCycleLR: 0.00024359739032465288 pytorch OneCycleLR: 0.00010446806481389881
- custom OneCycleLR: 0.0002417152959042349 pytorch OneCycleLR: 9.993682626149293e-05
- custom OneCycleLR: 0.0002398724914391225 pytorch OneCycleLR: 9.549512084651507e-05
- custom OneCycleLR: 0.00023806917901359227 pytorch OneCycleLR: 9.114394260655564e-05
- custom OneCycleLR: 0.00023630555638117247 pytorch OneCycleLR: 8.688426531955129e-05
- custom OneCycleLR: 0.00023458181694295966 pytorch OneCycleLR: 8.271704228585612e-05
- custom OneCycleLR: 0.00023289814972640756 pytorch OneCycleLR: 7.864320611489772e-05
- custom OneCycleLR: 0.00023125473936459973 pytorch OneCycleLR: 7.466366851646164e-05
- custom OneCycleLR: 0.00022965176607600202 pytorch OneCycleLR: 7.077932009665415e-05
- custom OneCycleLR: 0.00022808940564469937 pytorch OneCycleLR: 6.69910301585882e-05
- custom OneCycleLR: 0.00022656782940111932 pytorch OneCycleLR: 6.32996465078364e-05
- custom OneCycleLR: 0.00022508720420324335 pytorch OneCycleLR: 5.970599526269471e-05
- custom OneCycleLR: 0.00022364769241830972 pytorch OneCycleLR: 5.6210880669300965e-05
- custom OneCycleLR: 0.00022224945190500755 pytorch OneCycleLR: 5.2815084921647e-05
- custom OneCycleLR: 0.0002208926359961657 pytorch OneCycleLR: 4.9519367986526286e-05
- custom OneCycleLR: 0.0002195773934819385 pytorch OneCycleLR: 4.632446743345669e-05
- custom OneCycleLR: 0.00021830386859348928 pytorch OneCycleLR: 4.3231098269614797e-05
- custom OneCycleLR: 0.00021707220098717307 pytorch OneCycleLR: 4.0239952779819815e-05
- custom OneCycleLR: 0.00021588252572922275 pytorch OneCycleLR: 3.73517003716026e-05
- custom OneCycleLR: 0.00021473497328093673 pytorch OneCycleLR: 3.456698742539522e-05
- custom OneCycleLR: 0.00021362966948437268 pytorch OneCycleLR: 3.1886437149872676e-05
- custom OneCycleLR: 0.00021256673554854755 pytorch OneCycleLR: 2.9310649442481776e-05
- custom OneCycleLR: 0.0002115462880361455 pytorch OneCycleLR: 2.6840200755185466e-05
- custom OneCycleLR: 0.00021056843885073584 pytorch OneCycleLR: 2.447564396545582e-05
- custom OneCycleLR: 0.00020963329522450102 pytorch OneCycleLR: 2.2217508252541176e-05
- custom OneCycleLR: 0.00020874095970647766 pytorch OneCycleLR: 2.006629897903861e-05
- custom OneCycleLR: 0.00020789153015131134 pytorch OneCycleLR: 1.8022497577794767e-05
- custom OneCycleLR: 0.0002070850997085245 pytorch OneCycleLR: 1.608656144416369e-05
- custom OneCycleLR: 0.00020632175681230326 pytorch OneCycleLR: 1.4258923833642831e-05
- custom OneCycleLR: 0.00020560158517179795 pytorch OneCycleLR: 1.2539993764912554e-05
- custom OneCycleLR: 0.00020492466376194484 pytorch OneCycleLR: 1.0930155928298623e-05
- custom OneCycleLR: 0.00020429106681480458 pytorch OneCycleLR: 9.429770599680518e-06
- custom OneCycleLR: 0.0002037008638114225 pytorch OneCycleLR: 8.039173559862363e-06
- custom OneCycleLR: 0.0002031541194742088 pytorch OneCycleLR: 6.758676019427176e-06
- custom OneCycleLR: 0.00020265089375984147 pytorch OneCycleLR: 5.588564549088189e-06
- custom OneCycleLR: 0.00020219124185269065 pytorch OneCycleLR: 4.529101015556186e-06
- custom OneCycleLR: 0.000201775214158768 pytorch OneCycleLR: 3.580522522934006e-06
- custom OneCycleLR: 0.00020140285630019817 pytorch OneCycleLR: 2.7430413596540916e-06
- custom OneCycleLR: 0.00020107420911021678 pytorch OneCycleLR: 2.016844950968456e-06
- custom OneCycleLR: 0.0002007893086286914 pytorch OneCycleLR: 1.4020958170042977e-06
- custom OneCycleLR: 0.0002005481860981705 pytorch OneCycleLR: 8.989315363919581e-07
- custom OneCycleLR: 0.00020035086796045665 pytorch OneCycleLR: 5.074647154757879e-07
- custom OneCycleLR: 0.00020019737585370734 pytorch OneCycleLR: 2.277829631129057e-07
- custom OneCycleLR: 0.0002000877266100618 pytorch OneCycleLR: 5.994887106690402e-08
- custom OneCycleLR: 0.00020002193225379506 pytorch OneCycleLR: 4e-09
- custom OneCycleLR: 0.00019999999999999996 pytorch OneCycleLR: 5.994887106690402e-08
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。