赞
踩
自然语言处理(简称NLP),是研究计算机处理人类语言的一门技术,包括:
1.句法语义分析:对于给定的句子,进行分词、词性标记、命名实体识别和链接、句法分析、语义角色识别和多义词消歧。
2.信息抽取:从给定文本中抽取重要的信息,比如,时间、地点、人物、事件、原因、结果、数字、日期、货币、专有名词等等。通俗说来,就是要了解谁在什么时候、什么原因、对谁、做了什么事、有什么结果。涉及到实体识别、时间抽取、因果关系抽取等关键技术。
3.文本挖掘(或者文本数据挖掘):包括文本聚类、分类、信息抽取、摘要、情感分析以及对挖掘的信息和知识的可视化、交互式的表达界面。目前主流的技术都是基于统计机器学习的。
4.机器翻译:把输入的源语言文本通过自动翻译获得另外一种语言的文本。根据输入媒介不同,可以细分为文本翻译、语音翻译、手语翻译、图形翻译等。机器翻译从最早的基于规则的方法到二十年前的基于统计的方法,再到今天的基于神经网络(编码-解码)的方法,逐渐形成了一套比较严谨的方法体系。
5.信息检索:对大规模的文档进行索引。可简单对文档中的词汇,赋之以不同的权重来建立索引,也可利用1,2,3的技术来建立更加深层的索引。在查询的时候,对输入的查询表达式比如一个检索词或者一个句子进行分析,然后在索引里面查找匹配的候选文档,再根据一个排序机制把候选文档排序,最后输出排序得分最高的文档。
6.问答系统: 对一个自然语言表达的问题,由问答系统给出一个精准的答案。需要对自然语言查询语句进行某种程度的语义分析,包括实体链接、关系识别,形成逻辑表达式,然后到知识库中查找可能的候选答案并通过一个排序机制找出最佳的答案。
7.对话系统:系统通过一系列的对话,跟用户进行聊天、回答、完成某一项任务。涉及到用户意图理解、通用聊天引擎、问答引擎、对话管理等技术。此外,为了体现上下文相关,要具备多轮对话能力。同时,为了体现个性化,要开发用户画像以及基于用户画像的个性化回复。
随着深度学习在图像识别、语音识别领域的大放异彩,人们对深度学习在NLP的价值也寄予厚望。再加上AlphaGo的成功,人工智能的研究和应用变得炙手可热。自然语言处理作为人工智能领域的认知智能,成为目前大家关注的焦点。很多研究生都在进入自然语言领域,寄望未来在人工智能方向大展身手。但是,大家常常遇到一些问题。俗话说,万事开头难。如果第一件事情成功了,学生就能建立信心,找到窍门,今后越做越好。否则,也可能就灰心丧气,甚至离开这个领域。这里针对给出我个人的建议,希望我的这些粗浅观点能够引起大家更深层次的讨论。
建议1:如何在NLP领域快速学会第一个技能?
我的建议是:找到一个开源项目,比如机器翻译或者深度学习的项目。理解开源项目的任务,编译通过该项目发布的示范程序,得到与项目示范程序一致的结果。然后再深入理解开源项目示范程序的算法。自己编程实现一下这个示范程序的算法。再按照项目提供的标准测试集测试自己实现的程序。如果输出的结果与项目中出现的结果不一致,就要仔细查验自己的程序,反复修改,直到结果与示范程序基本一致。如果还是不行,就大胆给项目的作者写信请教。在此基础上,再看看自己能否进一步完善算法或者实现,取得比示范程序更好的结果。
建议2:如何选择第一个好题目?
工程型研究生,选题很多都是老师给定的。需要采取比较实用的方法,扎扎实实地动手实现。可能不需要多少理论创新,但是需要较强的实现能力和综合创新能力。而学术型研究生需要取得一流的研究成果,因此选题需要有一定的创新。我这里给出如下的几点建议。
建议3:如何写出第一篇论文?
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。