当前位置:   article > 正文

历史最全GAN网络及其各种变体整理(附论文及代码实现)_gan及变体的实例程序

gan及变体的实例程序

 

原创: lqfarmer 深度学习与NLP 2018-02-26

    文章主要整理了GAN网络及其各种变体模型,并给出了模型的论文出处及代码实现,结合最原始的论文和代码实现,可以加深对模型原理的理解。

 

目录

        GAN

        Auxiliary Classifier GAN

        Bidirectional GAN

        Boundary-Seeking GAN

        Context-Conditional GAN

        Coupled GANs

        CycleGAN

        Deep Convolutional GAN

        DualGAN

        Generative Adversarial Network

        InfoGAN

        LSGAN

        Semi-Supervised GAN

        Wasserstein GAN

GAN

实现最原始的,基于多层感知器构成的生成器和判别器,组成的生成对抗网络模型(Generative Adversarial)。

参考论文:《Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

 

AC-GAN

实现辅助分类-生成对抗网络(Auxiliary Classifier Generative Adversarial Network)。

参考论文:《Conditional Image Synthesis With Auxiliary Classifier GANs》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/acgan/acgan.py

 

BiGAN

实现双向生成对抗网络(Bidirectional Generative Adversarial Network)。

参考论文:《Adversarial Feature Learning》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/bigan/bigan.py

 

BGAN

实现边界搜索生成对抗网络(Boundary-Seeking Generative Adversarial Networks)。

参考论文:《Boundary-Seeking Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/bgan/bgan.py

 

CC-GAN

实现基于上下文的半监督生成对抗网络(Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks)。

参考论文:《Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/ccgan/ccgan.py

 

CoGAN

实现耦合生成对抗网络(Coupled generative adversarial networks)。

参考论文:《Coupled Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/cogan/cogan.py

 

CycleGAN

实现基于循环一致性对抗网络(Cycle-Consistent Adversarial Networks)的不成对的Image-to-Image 翻译。

参考论文:《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/cyclegan/cyclegan.py

 

DCGAN

实现深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network)。

参考论文:《Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/dcgan/dcgan.py

 

DualGAN

实现对偶生成对抗网络(DualGAN),基于无监督的对偶学习进行Image-to-Image翻译。

参考论文:《DualGAN: Unsupervised Dual Learning for Image-to-Image Translation》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/dualgan/dualgan.py

 

InfoGAN

实现的信息最大化的生成对抗网络(InfoGAN),基于信息最大化生成对抗网络的可解释表示学习。

参考论文:《InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/infogan/infogan.py

 

LSGAN

实现最小均方误差的生成对抗网络(Least Squares Generative Adversarial Networks)。

参考论文:《Least Squares Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/lsgan/lsgan.py

 

SGAN

实现半监督生成对抗网络(Semi-Supervised Generative Adversarial Network)。

参考论文:《Semi-Supervised Learning with Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/sgan/sgan.py

 

WGAN

实现 Wasserstein GAN。

参考论文:《Wasserstein GAN》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/wgan/wgan.py

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/415182
推荐阅读
相关标签
  

闽ICP备14008679号