当前位置:   article > 正文

你应该知道的C语言Cache命中率提升法_c语言 提高cache命中

c语言 提高cache命中

在这里插入图片描述
C语言因其对内存的精细控制和高执行效率而在业界长盛不衰。但是,同样的语言不同的用法导致写出的代码执行效率可能会有很大差异(数量级上的差异)。

今天码哥给大家演示一种因cache命中率导致的效率差异示例。场景非常简单,就是单链表的遍历。

或许有的人会有疑问,单链表的遍历效率还会和cache命中有关吗?

码哥先不透露,我们先来看一段代码:

代码一

/* a.c */
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

typedef struct chain_s {
    struct chain_s *next;
} chain_t;

int main(void)
{
    int i;
    chain_t *arr = NULL, *c, *p;
    struct timeval begin, end;
    /*build*/
    for (i = 0; i < 8192; ++i) {
        c = (chain_t *)malloc(sizeof(chain_t));
        if (c == NULL)
            exit(-1);
        if (i % 8 == 0) {
            if (arr == NULL) {
                arr = p = c;
            } else {
                p->next = c;
                p = c;
            }
        }
    }
    /*clean cache*/
    for (i = 0; i < 999999; ++i) {
        c = (chain_t *)malloc(sizeof(chain_t));
        if (c == NULL)
            exit(-1);
        c->next = NULL;
    }
    /*scan*/
    gettimeofday(&begin, NULL);
    for (c = arr; c != NULL; c = c->next)
        ;/*do nothing*/
    gettimeofday(&end, NULL);
    printf("%lu(us)\n", (end.tv_sec*1000000+end.tv_usec)-(begin.tv_sec*1000000+begin.tv_usec));
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43

代码很简单,一共分为三部分:

  1. 构造单链表,我会分配8192个链表节点,但是只有可以被8整除的节点才会加入链表,换言之,有1024个节点加入链表。
  2. 因为构造链表时必然会存在cache缓存,我们额外分配999999个节点,用来尽可能的洗掉构造时的缓存。
  3. 遍历链表并统计时长。

那么这段代码在码哥的虚拟机环境中运行的结果如下:

$ ./a
58(us)
  • 1
  • 2

这个时间是多次执行程序后找出的平均时间。

那么,问题来了,这样的链表遍历效率是否有可能再提升呢?

答案是,有的。我们来看下一段代码:

代码二

/* b.c */
#include <stdio.h>
#include <sys/time.h>
#include <stdlib.h>

typedef struct chain_s {
    struct chain_s *next;
} chain_t;

int main(void)
{
    int i;
    chain_t arr[1024], *c;
    struct timeval begin, end;
    /*build*/
    for (i = 0; i < sizeof(arr)/sizeof(chain_t); ++i) {
        if (i < sizeof(arr)/sizeof(chain_t)-1)
            arr[i].next = &arr[i+1];
        else
            arr[i].next = NULL;
    }
    /*clean cache*/
    for (i = 0; i < 999999; ++i) {
        c = (chain_t *)malloc(sizeof(chain_t));
        if (c == NULL)
            exit(-1);
        c->next = NULL;
    }
    /*scan*/
    gettimeofday(&begin, NULL);
    for (c = arr; c != NULL; c = c->next)
        ;/*do nothing*/
    gettimeofday(&end, NULL);
    printf("%lu(us)\n", (end.tv_sec*1000000+end.tv_usec)-(begin.tv_sec*1000000+begin.tv_usec));
    return 0;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36

同样的链表结构,同样的缓存清除和遍历代码。不同之处在于构建部分。这一次,我们是在栈上创建了1024个链结点数组,然后将数组元素构建成了一条单链表。链表节点数与上一段代码中构建的链表节点数是一致的。

那么这段代码中遍历链表的时间又是多少呢?

$ ./b
5(us)
  • 1
  • 2

同样是执行多次程序的平均时间。

可以看到,两段代码足足差了一个数量级。但是相信大家在看完代码后也明白了差异缘何。

分析与结论

效率的提升源自于链表的构建,确切的说,源自于链表节点地址的连续性。

在第二段代码中,链表节点是从一片连续空间中顺序取出的,因此扫链表与顺序访问数组元素并无区别。当我们访问数据时,如果数据未在缓存中命中,那么是会将该数据及其后一部分(与cache line大小有关,不额外展开了)数据加载进cache中的。因此,访问一个数据会将其后连续的一部分数据访问效率连带提升。

这两段代码在我们实际项目中又有何启发呢?

我们常见的高并发网络中,即便用到链表,但链结点地址通常都是不连续的,因为连接的释放和分配时机相对随机。

那么我们有没有可能尽可能让这些节点保持连续性呢?

当然可以,这就是为什么要构造内存池的一个原因了。让一类需要高效访问的结构走内存池进行统一管理,可以大幅提升程序执行效率。

当然,内存池还有额外的好处就是可以统一释放回收内存,例如Nginx中,经常看到我们ngx_alloc,但不见free的缘由,因为在连接断开时,Nginx做了统一的释放。


欢迎喜欢的朋友关注码哥,也可以在下方给码哥留言评论。谢谢观看!
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/羊村懒王/article/detail/552400
推荐阅读
相关标签
  

闽ICP备14008679号