赞
踩
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。
堆(Heap)是计算机科学中一类特殊的数据结构,是最高效的优先级队列。堆通常是一个可以被看作一棵完全二叉树的数组对象。
堆(heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
(1)堆中某个结点的值总是不大于或不小于其父结点的值;
(2)堆总是一棵完全二叉树。
将根结点最大的堆叫做最大堆或大根堆,根结点最小的堆叫做最小堆或小根堆。常见的堆有二叉堆、斐波那契堆等。
堆的物理结构本质上是顺序存储的,是线性的。但在逻辑上不是线性的,是完全二叉树的这种逻辑储存结构。 堆的这个数据结构,里面的成员包括一维数组,数组的容量,数组元素的个数,有两个直接后继。
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。
堆的定义代码
typedef int HPDataType;
typedef struct Heap
{
HPDataType* a;
int size;
int capacity;
}HP;
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根结点开始的向下调整算法可以把它调整成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。
int array[] = {27,15,19,18,28,34,65,49,25,37};
代码实现
void AdjustDown(HPDataType* a, int n, int parent) { int child = 2 * parent + 1; while (child < n) { if (child+1<n && a[child] > a[child + 1]) { child++; } if (a[child] < a[parent]) { Swap(&a[child], &a[parent]); parent = child; child = parent * 2 + 1; } else { break; } } }
下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根结点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。
代码如下(示例):
int a[] = {1,5,3,8,7,6};
建堆的复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的
就是近似值,多几个结点不影响最终结果):
所以建堆的时间复杂度为O(n)。
先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
代码实现
void HPPush(HP* php, HPDataType x) { assert(php); if (php->size == php->capacity) { int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2; HPDataType* temp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity); if (temp == NULL) { perror("realloc"); return; } php->a=temp; php->capacity = newcapacity; } php->a[php->size] = x; php->size++; AdjustUp(php->a, php->size - 1); }
其中向上调整的函数AdjustUp()为
void AdjustUp(HPDataType* a, int child) { assert(a); int parent = (child - 1) / 2; while (child > 0) { if (a[child] < a[parent]) { Swap(&a[child], &a[parent]); child = parent; parent = (child - 1) / 2; } else { break; } } }
删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调整算法。
void HPPop(HP* php)
{
assert(php);
assert(php->size > 0);
Swap(&php->a[0], &php->a[php->size - 1]);
php->size--;
AdjustDown(php->a, php->size, 0);
}
void Swap(HPDataType* child, HPDataType* parent)
{
HPDataType temp = *child;
*child = *parent;
*parent = temp;
}
void HPInit(HP* php)
{
assert(php);
php->a = NULL;
php->capacity = php->size = 0;
}
void HPDestroy(HP* php)
{
assert(php);
free(php->a);
php->a = NULL;
php->capacity = php->size = 0;
}
堆排序即利用堆的思想来进行排序,总共分为两个步骤:
void Heapsort(int* a, int n)
{
int i = 0;
for (i = (n - 1 - 1) / 2; i >= 0; i--)
{
AdjustDown(a, n, i);
}
int end = n - 1;
while (end > 0)
{
Swap(&a[0], &a[end]);
AdjustDown(a, end, 0);
end--;
}
}
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
以上就是今天要讲的内容,本文仅仅简单介绍了堆的使用,而堆提供了大量能使我们快速便捷地处理数据的思路。以后博主会继续介绍二叉树的其他知识,期待你的阅读。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。