赞
踩
先用一张图总结Sender线程的流程
在 KafkaProducer 中会启动一个单独的线程,其名称为 “kafka-producer-network-thread | clientID”,其中 clientID 为生产者的 id
1.1 类图
我们先来看一下其各个属性的含义:
1.2 run 方法详解
Sender#run
- public void run() {
- log.debug("Starting Kafka producer I/O thread.");
- while (running) {
- try {
- runOnce(); // @1
- } catch (Exception e) {
- log.error("Uncaught error in kafka producer I/O thread: ", e);
- }
- }
- log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");
- while (!forceClose && (this.accumulator.hasUndrained() || this.client.inFlightRequestCount() > 0)) { // @2
- try {
- runOnce();
- } catch (Exception e) {
- log.error("Uncaught error in kafka producer I/O thread: ", e);
- }
- }
- if (forceClose) { // @3
- log.debug("Aborting incomplete batches due to forced shutdown");
- this.accumulator.abortIncompleteBatches();
- }
- try {
- this.client.close(); // @4
- } catch (Exception e) {
- log.error("Failed to close network client", e);
- }
- log.debug("Shutdown of Kafka producer I/O thread has completed.");
- }
代码@1:Sender 线程在运行状态下主要的业务处理方法,将消息缓存区中的消息向 broker 发送。 代码@2:如果主动关闭 Sender 线程,如果不是强制关闭,则如果缓存区还有消息待发送,再次调用 runOnce 方法将剩余的消息发送完毕后再退出。 代码@3:如果强制关闭 Sender 线程,则拒绝未完成提交的消息。 代码@4:关闭 Kafka Client 即网络通信对象。
接下来将分别探讨其上述方法的实现细节。
1.2.1 runOnce 详解
Sender#runOnce
- void runOnce() {
- // 此处省略与事务消息相关的逻辑
- long currentTimeMs = time.milliseconds();
- long pollTimeout = sendProducerData(currentTimeMs); // @1
- client.poll(pollTimeout, currentTimeMs); // @2
- }
本文不关注事务消息的实现原理,故省略了该部分的代码。 代码@1:调用 sendProducerData 方法发送消息。 代码@2:调用这个方法的作用?
接下来分别对上述两个方法进行深入探究。
1.1.2.1 sendProducerData
接下来将详细分析其实现步骤。 Sender#sendProducerData
- Cluster cluster = metadata.fetch();
- // get the list of partitions with data ready to send
- RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);
Step1:首先根据当前时间,根据缓存队列中的数据判断哪些 topic 的 哪些分区已经达到发送条件。达到可发送的条件将在 2.1.1.1 节详细分析。
Sender#sendProducerData
- if (!result.unknownLeaderTopics.isEmpty()) {
- for (String topic : result.unknownLeaderTopics)
- this.metadata.add(topic);
-
- log.debug("Requesting metadata update due to unknown leader topics from the batched records: {}",
- result.unknownLeaderTopics);
- this.metadata.requestUpdate();
- }
Step2:如果在待发送的消息未找到其路由信息,则需要首先去 broker 服务器拉取对应的路由信息(分区的 leader 节点信息)。
Sender#sendProducerData
- long notReadyTimeout = Long.MAX_VALUE;
- while (iter.hasNext()) {
- Node node = iter.next();
- if (!this.client.ready(node, now)) {
- iter.remove();
- notReadyTimeout = Math.min(notReadyTimeout, this.client.pollDelayMs(node, now));
- }
- }
Step3:移除在网络层面没有准备好的分区,并且计算在接下来多久的时间间隔内,该分区都将处于未准备状态。 1、在网络环节没有准备好的标准如下:
2、client pollDelayMs 预估分区在接下来多久的时间间隔内都将处于未转变好状态(not ready),其标准如下:
Sender#sendProducerData
- // create produce requests
- Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now);
Step4:根据已准备的分区,从缓存区中抽取待发送的消息批次(ProducerBatch),并且按照 nodeId:List 组织,注意,抽取后的 ProducerBatch 将不能再追加消息了,就算还有剩余空间可用,具体抽取将在下文在详细介绍。
Sender#sendProducerData
- addToInflightBatches(batches);
- public void addToInflightBatches(Map<Integer, List<ProducerBatch>> batches) {
- for (List<ProducerBatch> batchList : batches.values()) {
- addToInflightBatches(batchList);
- }
- }
- private void addToInflightBatches(List<ProducerBatch> batches) {
- for (ProducerBatch batch : batches) {
- List<ProducerBatch> inflightBatchList = inFlightBatches.get(batch.topicPartition);
- if (inflightBatchList == null) {
- inflightBatchList = new ArrayList<>();
- inFlightBatches.put(batch.topicPartition, inflightBatchList);
- }
- inflightBatchList.add(batch);
- }
- }
Step5:将抽取的 ProducerBatch 加入到 inFlightBatches 数据结构,该属性的声明如下:Map<TopicPartition, List< ProducerBatch >> inFlightBatches,即按照 topic-分区 为键,存放已抽取的 ProducerBatch,这个属性的含义就是存储待发送的消息批次。可以根据该数据结构得知在消息发送时以分区为维度反馈 Sender 线程的“积压情况”,max.in.flight.requests.per.connection 就是来控制积压的最大数量,如果积压达到这个数值,针对该队列的消息发送会限流。
Sender#sendProducerData
- accumulator.resetNextBatchExpiryTime();
- List<ProducerBatch> expiredInflightBatches = getExpiredInflightBatches(now);
- List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(now);
- expiredBatches.addAll(expiredInflightBatches);
Step6:从 inflightBatches 与 batches 中查找已过期的消息批次(ProducerBatch),判断是否过期的标准是系统当前时间与 ProducerBatch 创建时间之差是否超过120s,过期时间可以通过参数 delivery.timeout.ms 设置。
Sender#sendProducerData
- if (!expiredBatches.isEmpty())
- log.trace("Expired {} batches in accumulator", expiredBatches.size());
- for (ProducerBatch expiredBatch : expiredBatches) {
- String errorMessage = "Expiring " + expiredBatch.recordCount + " record(s) for " + expiredBatch.topicPartition
- + ":" + (now - expiredBatch.createdMs) + " ms has passed since batch creation";
- failBatch(expiredBatch, -1, NO_TIMESTAMP, new TimeoutException(errorMessage), false);
- if (transactionManager != null && expiredBatch.inRetry()) {
- // This ensures that no new batches are drained until the current in flight batches are fully resolved.
- transactionManager.markSequenceUnresolved(expiredBatch.topicPartition);
- }
- }
Step7:处理已超时的消息批次,通知该批消息发送失败,即通过设置 KafkaProducer#send 方法返回的凭证中的 FutureRecordMetadata 中的 ProduceRequestResult result,使之调用其 get 方法不会阻塞。
Sender#sendProducerData
sensors.updateProduceRequestMetrics(batches);
Step8:收集统计指标,本文不打算详细分析,但后续会专门对 Kafka 的 Metrics 设计进行一个深入的探讨与学习。
Sender#sendProducerData
- long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
- pollTimeout = Math.min(pollTimeout, this.accumulator.nextExpiryTimeMs() - now);
- pollTimeout = Math.max(pollTimeout, 0);
- if (!result.readyNodes.isEmpty()) {
- log.trace("Nodes with data ready to send: {}", result.readyNodes);
- pollTimeout = 0;
- }
Step9:设置下一次的发送延时,待补充详细分析。
Sender#sendProducerData
- sendProduceRequests(batches, now);
- private void sendProduceRequests(Map<Integer, List<ProducerBatch>> collated, long now) {
- for (Map.Entry<Integer, List<ProducerBatch>> entry : collated.entrySet())
- sendProduceRequest(now, entry.getKey(), acks, requestTimeoutMs, entry.getValue());
- }
Step10:该步骤按照 brokerId 分别构建发送请求,即每一个 broker 会将多个 ProducerBatch 一起封装成一个请求进行发送,同一时间,每一个 与 broker 连接只会只能发送一个请求,注意,这里只是构建请求,并最终会通过 NetworkClient#send 方法,将该批数据设置到 NetworkClient 的待发送数据中,此时并没有触发真正的网络调用。
sendProducerData 方法就介绍到这里了,既然这里还没有进行真正的网络请求,那在什么时候触发呢?
我们继续回到 runOnce 方法。
1.2.1.2 NetworkClient 的 poll 方法
- public List<ClientResponse> poll(long timeout, long now) {
- ensureActive();
-
- if (!abortedSends.isEmpty()) {
- // If there are aborted sends because of unsupported version exceptions or disconnects,
- // handle them immediately without waiting for Selector#poll.
- List<ClientResponse> responses = new ArrayList<>();
- handleAbortedSends(responses);
- completeResponses(responses);
- return responses;
- }
-
- long metadataTimeout = metadataUpdater.maybeUpdate(now); // @1
- try {
- this.selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs)); // @2
- } catch (IOException e) {
- log.error("Unexpected error during I/O", e);
- }
-
- // process completed actions
- long updatedNow = this.time.milliseconds();
- List<ClientResponse> responses = new ArrayList<>(); // @3
- handleCompletedSends(responses, updatedNow);
- handleCompletedReceives(responses, updatedNow);
- handleDisconnections(responses, updatedNow);
- handleConnections();
- handleInitiateApiVersionRequests(updatedNow);
- handleTimedOutRequests(responses, updatedNow);
- completeResponses(responses); // @4
- return responses;
- }
本文并不会详细深入探讨其网络实现部分,Kafka 的 网络通讯后续我会专门详细的介绍,在这里先点出其关键点。 代码@1:尝试更新云数据。 代码@2:触发真正的网络通讯,该方法中会通过收到调用 NIO 中的 Selector#select() 方法,对通道的读写就绪事件进行处理,当写事件就绪后,就会将通道中的消息发送到远端的 broker。 代码@3:然后会消息发送,消息接收、断开连接、API版本,超时等结果进行收集。 代码@4:并依次对结果进行唤醒,此时会将响应结果设置到 KafkaProducer#send 方法返回的凭证中,从而唤醒发送客户端,完成一次完整的消息发送流程。
handleCompletedSends方法, 用于处理不需要响应的请求, 即发送成功就可执行该方法
handleCompletedReceives方法,用于处理需要响应的请求,即发送请求后得到response后执行该方法,
两个方法的相同点: 都会从inflightreques队列中删除对应的reques, 将request加入请求响应(不需要回复的request使用默认响应,非真值)
两个方法的不同点:
completeResponse方法处理clientrequest中定义的回调方法,该回调方法中又分别调用该请求中的records定义的回调
clientrequest中的回调方法在handleresponse方法中定义
Sender 发送线程的流程就介绍到这里了,接下来首先给出一张流程图,然后对上述流程中一些关键的方法再补充深入探讨一下。
1.2.2 run 方法流程图
根据上面的源码分析得出上述流程图,图中对重点步骤也详细标注了其关键点。下面我们对上述流程图中 Sender 线程依赖的相关类的核心方法进行解读,以便加深 Sender 线程的理解。
由于在讲解 Sender 发送流程中,大部分都是调用 RecordAccumulator 方法来实现其特定逻辑,故接下来重点对上述涉及到RecordAccumulator 的方法进行一个详细剖析,加强对 Sender 流程的理解。
2.1 RecordAccumulator 的 ready 方法详解
该方法主要就是根据缓存区中的消息,判断哪些分区已经达到发送条件。
RecordAccumulator#ready
- public ReadyCheckResult ready(Cluster cluster, long nowMs) {
- Set<Node> readyNodes = new HashSet<>();
- long nextReadyCheckDelayMs = Long.MAX_VALUE;
- Set<String> unknownLeaderTopics = new HashSet<>();
-
- boolean exhausted = this.free.queued() > 0;
- for (Map.Entry<TopicPartition, Deque<ProducerBatch>> entry : this.batches.entrySet()) { // @1
- TopicPartition part = entry.getKey();
- Deque<ProducerBatch> deque = entry.getValue();
-
- Node leader = cluster.leaderFor(part); // @2
- synchronized (deque) {
- if (leader == null && !deque.isEmpty()) { // @3
- // This is a partition for which leader is not known, but messages are available to send.
- // Note that entries are currently not removed from batches when deque is empty.
- unknownLeaderTopics.add(part.topic());
- } else if (!readyNodes.contains(leader) && !isMuted(part, nowMs)) { // @4
- ProducerBatch batch = deque.peekFirst();
- if (batch != null) {
- long waitedTimeMs = batch.waitedTimeMs(nowMs);
- boolean backingOff = batch.attempts() > 0 && waitedTimeMs < retryBackoffMs;
- long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs;
- boolean full = deque.size() > 1 || batch.isFull();
- boolean expired = waitedTimeMs >= timeToWaitMs;
- boolean sendable = full || expired || exhausted || closed || flushInProgress();
- if (sendable && !backingOff) { // @5
- readyNodes.add(leader);
- } else {
- long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0);
- // Note that this results in a conservative estimate since an un-sendable partition may have
- // a leader that will later be found to have sendable data. However, this is good enough
- // since we'll just wake up and then sleep again for the remaining time.
- nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);
- }
- }
- }
- }
- }
- return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeaderTopics);
- }
代码@1:对生产者缓存区 ConcurrentHashMap<TopicPartition, Deque< ProducerBatch>> batches 遍历,从中挑选已准备好的消息批次。 代码@2:从生产者元数据缓存中尝试查找分区(TopicPartition) 的 leader 信息,如果不存在,当将该 topic 添加到 unknownLeaderTopics (代码@3),稍后会发送元数据更新请求去 broker 端查找分区的路由信息。 代码@4:如果不在 readyNodes 中就需要判断是否满足条件,isMuted 与顺序消息有关,本文暂时不关注,在后面的顺序消息部分会重点探讨。 代码@5:这里就是判断是否准备好的条件,先一个一个来解读局部变量的含义。
2.2 RecordAccumulator 的 drain方法详解
RecordAccumulator#drain
- public Map<Integer, List<ProducerBatch>> drain(Cluster cluster, Set<Node> nodes, int maxSize, long now) { // @1
- if (nodes.isEmpty())
- return Collections.emptyMap();
-
- Map<Integer, List<ProducerBatch>> batches = new HashMap<>();
- for (Node node : nodes) {
- List<ProducerBatch> ready = drainBatchesForOneNode(cluster, node, maxSize, now); // @2
- batches.put(node.id(), ready);
- }
- return batches;
- }
代码@1:我们首先来介绍该方法的参数:
代码@2:遍历所有节点,调用 drainBatchesForOneNode 方法抽取数据,组装成 Map<Integer /** brokerId */, List< ProducerBatch>> batches。
接下来重点来看一下 drainBatchesForOneNode。 RecordAccumulator#drainBatchesForOneNode
- private List<ProducerBatch> drainBatchesForOneNode(Cluster cluster, Node node, int maxSize, long now) {
- int size = 0;
- List<PartitionInfo> parts = cluster.partitionsForNode(node.id()); // @1
- List<ProducerBatch> ready = new ArrayList<>();
- int start = drainIndex = drainIndex % parts.size(); // @2
- do { // @3
- PartitionInfo part = parts.get(drainIndex);
- TopicPartition tp = new TopicPartition(part.topic(), part.partition());
- this.drainIndex = (this.drainIndex + 1) % parts.size();
-
- if (isMuted(tp, now))
- continue;
-
- Deque<ProducerBatch> deque = getDeque(tp); // @4
- if (deque == null)
- continue;
-
- synchronized (deque) {
- // invariant: !isMuted(tp,now) && deque != null
- ProducerBatch first = deque.peekFirst(); // @5
- if (first == null)
- continue;
-
- // first != null
- boolean backoff = first.attempts() > 0 && first.waitedTimeMs(now) < retryBackoffMs; // @6
- // Only drain the batch if it is not during backoff period.
- if (backoff)
- continue;
-
- if (size + first.estimatedSizeInBytes() > maxSize && !ready.isEmpty()) { // @7
- break;
- } else {
- if (shouldStopDrainBatchesForPartition(first, tp))
- break;
-
- // 这里省略与事务消息相关的代码,后续会重点学习。
- batch.close(); // @8
- size += batch.records().sizeInBytes();
- ready.add(batch);
-
- batch.drained(now);
- }
- }
- } while (start != drainIndex);
- return ready;
- }
代码@1:根据 brokerId 获取该 broker 上的所有主分区。 代码@2:初始化 start。这里首先来阐述一下 start 与 drainIndex 。
代码@3:循环从缓存区抽取对应分区中累积的数据。 代码@4:根据 topic + 分区号从生产者发送缓存区中获取已累积的双端Queue。 代码@5:从双端队列的头部获取一个元素。(消息追加时是追加到队列尾部)。 代码@6:如果当前批次是重试,并且还未到阻塞时间,则跳过该分区。 代码@7:如果当前已抽取的消息总大小 加上新的消息已超过 maxRequestSize,则结束抽取。 代码@8:将当前批次加入到已准备集合中,并关闭该批次,即不在允许向该批次中追加消息。
关于消息发送就介绍到这里,NetworkClient 的 poll 方法内部会调用 Selector 执行就绪事件的选择,并将抽取的消息通过网络发送到 Broker 服务器
关于网络nio参见: https://zqhxuyuan.github.io/2016/01/06/2016-01-06-Kafka_Producer/
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。