当前位置:   article > 正文

论文浅海矢量声场及其信号处理的学习_浅海波导如何通过截止频率判断有几个模态

浅海波导如何通过截止频率判断有几个模态

浅海矢量声场及其信号处理

水声物理、信号处理和海洋环境的紧密结合是声纳技术发展的必然趋势。浅海低频声纳是近代声纳发展的方向,水声探测的频段越来越低,矢量传感器的作用得到重视。

  • Pekeris波导声压阵速联合描述,由于简正波的作用通过垂直声强流的分析,声压和质点振速联合互谱处理可以进行目标深度判别的算法。

  • 利用垂直声强流无功分量判断目标的特定深度这一原理对不同浅海环境是可以适用的,有功分量的符号分布与传感器布放深度无关。通过分析得到作用范围,海底吸收不构成影响,对于未来趋势的低频有很好的效果。

  • 广义转换矩阵的矢量酉MUSIC算法,利用了观测数据的复共辘数据,使得特征分解可以在实数域进行,不但减小了运算量而且提高了方位估计性能。

  • 阵列声强器在欠采样条件下通过抑制稀疏阵的栅瓣模糊达到了增大阵列孔径,从而提高了方位分辨力的效果

  • 声压振速互协方差矩阵为基础的频率估计算法,在不损失估计性能的前提下,计算量减小为现有算法的。给出了所用模型的克拉美劳下限


绪论

从矢量传感器信号处理的物理基础一矢量声场入手,深入探讨浅海矢量声场的干涉结构的特点,特别是对被认为特性复杂而少有应用价值的垂直声强流的干涉结构进行研究,进而提出新的信号处理算法。

矢量声场信息
矢量声场

声压、振速、声强流等各种组合进行信号处理,矢量传感器的振速通道具备与频率无关的指向性,为低频宽带工作提供了物理基础,比常规声压有6db增益,矢量传感器具有可电子旋转的零点,可抗离散强干扰源。

-声场特性
传感器包括平台的放入对声场的畸变;干扰场的特点;信号场的特点
各向同性噪声场中,矢量噪声场各分量间的空间相关系数的基本形式分别为零阶、一阶、二阶球贝塞尔函数或它们的组合。对于海面偶极子噪声源来说,海洋水文和海底对矢量噪声场的空间相关半径的影响不可忽略划。浅海中,质点水平振速水平空间相关半径小而垂直相关半径大,而质点垂直振速水平空间相关半径大而垂直相关半径小,体现了各自的水平特性和垂直特性性。对平均声强器的抗各向同性干扰能力进行了研究。与基于声压的能量检测器相比,矢量传感器的增益可达到 15 –16 db。
由于声强的矢量特性,对于舰船信号而言,有功声强谱级信噪比要比动能和势能谱级信噪比中的任何一个高 3–6 db。
海洋波导中声压和质点振速水平分量之间近似满足声学欧姆定律,即声压信号和水平振速信号是完全相干的,而垂直振速较为复杂。
随着声场理论、信号处理、计算技术的发展,今天已经从声场平均结构深入到精细干涉结构的研究与利用。
单矢量传感器信号处理和矢量阵列信号处理。前者是矢量信号处理的核心,后者是前者的扩展。

-研究进展
对远场点声源来说、当 f>c/h 时为声波频率,。为声速,为海深,海洋波导中声压信号和水平振速信号是接近完全相关的,而垂直振速则不然垂直方向形成了驻波场后续章节对此有详细讨论。被动矢量声纳必须注意这一点.

-单矢量传感器
单矢量传感器在水声探测中最基本的应用是检测和方位估计。研究内容包括似然比检测,空间处理增益,方位估计的等。矢量传感器最优检测器实质上是能量检测器。众所周知,能量检测器有时间带宽积增益,考虑至恢量传感器自身的空间增益Gs,则总增益为 G = 5logBT+Gs。
这里写图片描述
单矢量传感器的最大似然方位估计器是反正切型的平均声强器,但是当有多个目标时,由于声强流合成,时域平均声强器方位估计失效。可利用目标特性在各种变换域的不同而予以分辨如频域加权直方图法,,经验模态域分辨法等。
矢量传感器除了用于检测和方位估计以外,还可以用于时频参数估计方面,如频移键控通信系统的解码,高分辨频率估计等。
矢量阵可以有两重抵消阵元域抵消和波束域抵消。从波束图的角度考虑,矢量阵不但可以象声压阵那样形成波束零陷,而且还可以利用振速通道的偶极子指向性的零陷,这种附加的零陷还具有频率无关性,为宽带处理带来了方便,多相干源分辨,不减小阵列有效孔径,无左右舷模糊,可以空间欠采样等。

Pekeris波导中的简正波声强流及其应用

Pekeris波导 即均匀浅海中点源声场简正波的声强流,关注的是从物理上为矢量信号处理技术提供基础性的分析。于声强流分析的甚低频(70HZ以下)声压、振速垂直分量的互谱分析的目标识别原理。

简正波 简正波解是波动方程精确的积分解,反射波的互相干涉要形成一系列的固有振动,它用简正波(特征函数)来描述声传播,每一个特征函数都是波动方程的一个解,把简正波迭加起来,以满足边界条件和源条件。

声场为简正波和侧面波之和,在较远处可仅考虑波导简正波。每一阶简正波都对应一个截止频率fn,即当声波频率f小于fn时,第n阶波导简正波不能被激发。
这里写图片描述
声压 p的公式为
这里写图片描述
有P 和v的关系
这里写图片描述
得到
这里写图片描述
则水平声强流
这里写图片描述
利用Hankel展开式
这里写图片描述
上式右边第一项为实数,它是各阶简正波单独自身的水平声强流,它是有功声强流实数。这是说就每阶简正波单独自身而言,它在水平方向输运能量,在水平方向是行波。但式一的第二项是复数,这表明由于多阶简正波的相互交叉干涉,水平声强流既有有功分量又有无功分量,说明即使就简正波声场来说,它也具有矢量声场特性的表现。
垂直声强流为:
这里写图片描述
声强流的无功分量虽然不输运能量,却是声场的重要特性之一。从信号处理的角度看,它仍然携带了声场的重要信息。
当源深度变动时,接收到的垂直声强流无功分量的正负号呈有规律地变动,因而可以探测处目标上下方位。由于互易性原理在较深位置也可以达到同样效果,但是较深位置不容易调整,容易出现误差。
Ir的幅值随着距离作周期性地变化,将导致不同距离或深度上的信噪比的附加变化,这对分析基于Ir的声强器方位估计结果有指导意义。Ir和Iz随着距离作周期性变化,而工在本例条件下随着距离的起伏较小,再次表明垂直声强流的无功分量可作为信号处理的对象。
垂直声强流互谱处理器
这里写图片描述
进行垂直声强流处理的流程图如上。

浅海垂直声强流互谱处理的稳健性

对复杂环境下的海洋声场进行分析,目前已有多种数值算法和可从互联网络获得的软件。它们各自适用的场合如图所示圈。
这里写图片描述
海洋声传播概述
声传播数学模型的理论基础是波动方程,海洋声场所满足的空间三维波动方程。
这里写图片描述
带入简谐声源可以得到赫姆霍兹方程。与时间无关的或频域波动方程。有很多理论方法适用于解亥姆霍兹方程,比如射线理论、简正波理论、多路径展开、快速声场和抛物方程等,具体使用哪种方法依赖于对环境的具体几何假设和对解的选取类型。具体选择如下
这里写图片描述
简正波模型和快速场模型均基于声场的路径积分表示。简正波模型计算留数值,涉及到解算格林函数的极点。快速场水声中又称波数积分法直接数值计算路径积分。就计算效率而言,问题关键在于解算极点的速度能否比直接积分更快。大概计算几个格林函数相当于找到一个极点。对快速场来说,格林函数的个数与水平距离成正比。对于大部分应用而言,由于计算量大,快速场常常被用来当作标准解,衡量其他快速算法的精度。另一方面,简正波级数和忽略了在近场中比如倍海深以内重要的割线积分项。再比如自由场中点源产生的声场根本不存在任何简正波,还有些非常复杂的问题中要想可靠地得到简正波是非常困难的。此时,快速场模型就是一个适当的选择。

浅海矢量声场的数值解算
简正波
这里写图片描述
快速场
这里写图片描述
然而简正波存在泄漏模式,二阶简正波之外,其余的为泄漏模式。在考虑了这些泄露模式以后,计算得到的声压传播损失曲线与快速场的结果。二者有很好的一致性。说明Pekeris割线在舍去割线积分以后仍有较高的计算精度。
互易性
振速分量的响应与偶极子声源满足互易关系垂直振速位于偶极子的法向,水平振速位于偶极子的轴向。

矢量阵高分辨参数估计

矢量酉算法
方位估计是雷达、声纳、地震勘探、生物医学工程等阵列信号处理领域中的重要问题。引起广泛关注的是最大似然和子空间类算法,但是由于最大似然方位估计算法通常伴随着非线性和多维迭代优化计算,计算量大,不如子空间类的算法易于实现。为了进一步降低子空间类算法的计算量,引入了实值变换。**通过将复数特征值分解转换为实数特征值分解,运算量降为原来1/4。
均匀线列声矢量阵的实值处理
这里写图片描述
矢量阵宽带聚焦
对于宽带信号,可以通过聚焦的方式,将各个频率聚焦到某一频率上,从而实现了对宽带信号的处理。
这里写图片描述

宽带矢量阵传播算子法
该方法不再赘述,通过分解的方式进行计算。

阵列声强器去除栅瓣模糊
当阵列不满足空间采样定理时,声压阵将出现栅瓣模糊,矢量阵虽然有一定的抗左右舷模糊和栅瓣抑制能力,但当阵列高度空间欠采样时仍然会出现栅瓣模糊。须用阵列声强器估计得到的目标方位信息剔除栅瓣
其实现原理图如下
这里写图片描述
应用双向一阶递归滤波器滤波器提取出输出的空间谱的干扰背景形成自适应门限,只有当谱的强度超过门限时,才认为是一个有效的谱峰,对应着一个波束主瓣或栅瓣。对此谱峰内的每一个扫描方位应用常规阵列声强器得到一个目标方位估计值反,当反一引。时,。为门限值,,则认为该谱峰在扫描方位。上位于目标所形成的栅瓣,否则认为是位于主瓣。若该谱峰内所有方位中位于栅瓣的能量大于位于主瓣的能量,则认为该谱峰对应着目标的波束栅瓣,予以剔除,
应当看到,阵列声强器对各阵元间的时延信息利用得不够充分,因此得到的方位信息是粗略的。而VCBF没有充分利用阵列的声强信息,所以得到的是高精度但却有栅瓣模糊的空间谱。因此可由阵列声强器和的输出进行联合处理,得到高精度无模糊的方位估计。

基于矢量传感器的时频参数估计
可以充分利用目标和各向同性干扰之间的差别进行联合信息处理阅。已有的工作包括本论文前面几章的工作多关注于空域的联合信息处理,即波达方向的估计,而对在时频域进行联合处理关注不够。
两维振速可以电子旋转得到组合振速.

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/210453
推荐阅读
相关标签
  

闽ICP备14008679号