赞
踩
我们将通过一个简单实例来讲解LSTM建模过程以及模型的使用方法。实例描述如下,我们有一个整数序列[10, 20, 30, 40, 50, 60, 70],整数序列中共有7个数字,我们的目的或者说我们要解决的问题是,利用已有的这个整数序列来建立模型,用模型预测整数序列的下一个数字应该是多少?也就是整数序列的第8个数字应该是多少?一眼就能看出来,下一个数字应该是80,但是我们需要的是让模型预测出来这个数字。
下面我们梳理一下思路,我们希望向模型输入3个连续的整数,模型能够预测下一个整数,例如,当输入[20, 30, 40]时,模型能够输出[50]。看到这里,想必你已经明白我的意思了,没错,当输入[50, 60, 70]时,我们希望模型能够准确的预测出下一个数字,也就是整数序列的下一个数字。为了训练模型,我们需要把整数序列做一下调整,调整如下:
X表示模型的输入,Y表示模型的输出,每个X,Y对表示一个样本,X表示样本的输入,Y表示样本标签,在本例中共有4个样本。
用Keras建立模型时,要求模型的输入格式为[samples, timesteps, features](注:samples为样本数,timesteps为时间步数,features为特征数),
我们很期待,当输入[ 50, 60, 70]时,模型能准确预测出80
# LSTM单变量时间序列预测模型 from numpy import array import numpy as np from keras.models import Sequential from keras.layers import LSTM from keras.layers import Dense # 定义训练样本 X = array([[10, 20, 30], [20, 30, 40], [30, 40, 50], [40, 50, 60]]) y = array([40, 50, 60, 70]) # 将训练样本的数据格式从[samples, timesteps]转换为[samples, timesteps, features] # X = X.reshape((X.shape[0], X.shape[1], 1)) X = X.reshape((4,3,1)) # 定义模型 model = Sequential() # 只定义一个LSTM层 model.add(LSTM(50, activation='relu', input_shape=(3, 1))) # 输出层为全连接层 model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') # 训练模型 model.fit(X, y, epochs=1500, verbose=0) # 用模型进行预测,输入值为[50, 60, 70] x_input = array([50, 60, 70]) x_input = x_input.reshape((1, 3, 1)) yhat = model.predict(x_input, verbose=0) print(yhat)
Using TensorFlow backend. 2019-12-19 12:18:15.896560: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_100.dll 2019-12-19 12:18:17.545710: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library nvcuda.dll 2019-12-19 12:18:17.569281: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: name: GeForce GTX 1650 major: 7 minor: 5 memoryClockRate(GHz): 1.56 pciBusID: 0000:01:00.0 2019-12-19 12:18:17.569516: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check. 2019-12-19 12:18:17.570018: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0 2019-12-19 12:18:17.570323: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 2019-12-19 12:18:17.572096: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1618] Found device 0 with properties: name: GeForce GTX 1650 major: 7 minor: 5 memoryClockRate(GHz): 1.56 pciBusID: 0000:01:00.0 2019-12-19 12:18:17.572320: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check. 2019-12-19 12:18:17.572812: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1746] Adding visible gpu devices: 0 2019-12-19 12:18:18.096889: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1159] Device interconnect StreamExecutor with strength 1 edge matrix: 2019-12-19 12:18:18.097077: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1165] 0 2019-12-19 12:18:18.097188: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1178] 0: N 2019-12-19 12:18:18.098009: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1304] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 2919 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1650, pci bus id: 0000:01:00.0, compute capability: 7.5) 2019-12-19 12:18:18.986839: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_100.dll [[80.615295]] Process finished with exit code 0
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。