当前位置:   article > 正文

优秀的python库_一个优秀Python库,轻松吟诗作对写文章!

python api_demo.py --model_name_or_path

公众号:深度学习视觉

前言

该工具追求着这样的一个目标,几行代码调用最先进的模型,加载训练好的模型参数,来完成自然语言项目,比如机器翻译、文本摘要、问答系统等。Transformers 同时支持 PyTorch 和TensorFlow2.0,用户可以将这些工具放在一起使用。

支持模型

transformers目前提供以下NLU / NLG体系结构:BERT、GPT、GPT-2、Transformer-XL、XLNet、XLM、RoBERTa、DistilBERT、CTRL、CamemBERT、ALBERT、T5、XLM-RoBERTa、MMBT、FlauBERT、其他社区的模型

安装PyTorch-Transformers

pip install pytorch-transformers

使用GPT-2预测下一个单词

GPT-2是一种于基于transformer的生成语言模型,其语言生成能力优秀到被讨论禁止开源。该模型是在40GB的文本下进行无监督训练。

# 导入必要的库

import torch

from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

# 加载预训练模型tokenizer (vocabulary)

tokenizer = GPT2Tokenizer.from_pretrained('gpt2')

# 对文本输入进行编码

text = "What is the fastest car in the"

indexed_tokens = tokenizer.encode(text)

# 在PyTorch张量中转换indexed_tokens

tokens_tensor = torch.tensor([indexed_tokens])

# 加载预训练模型 (weights)

model = GPT2LMHeadModel.from_pretrained('gpt2')

#将模型设置为evaluation模式,关闭DropOut模块

model.eval()

# 如果你有GPU,把所有东西都放在cuda上

tokens_tensor = tokens_tensor.to('cuda')

model.to('cuda')

# 预测所有的tokens

with torch.no_grad():

outputs = model(tokens_tensor)

predictions = outputs[0]

# 得到预测的单词

predicted_index = torch.argmax(predictions[0, -1, :]).item()

predicted_text = tokenizer.decode(indexed_tokens + [predicted_index])

# 打印预测单词

print(predicted_text)

预测长文本

!git clone https://github.com/huggingface/pytorch-transformers.git

# 启动模型

!python pytorch-transformers/examples/run_generation.py \

--model_type=gpt2 \

--length=100 \

--model_name_or_path=gpt2 \

输入(本来是英文)

在一个令人震惊的发现中,科学家发现了一群独角兽,它们生活在安第斯山脉一个偏远的,以前未被开发的山谷中。对于研究人员而言,更令人惊讶的是,独角兽会说完美的英语。

输出(本来是英文)

独角兽似乎和普通人一样了解彼此。该研究于5月6日发表在《科学转化医学》上。此外,研究人员发现,百分之五的独角兽彼此之间具有很好的识别性。研究团队认为,这可能会转化为未来,使人类能够与称为超级独角兽的人进行更清晰的交流。如果我们要朝着那个未来前进,我们至少必须做到

除了GPT-2以外,还有诸如XLNet,一个在包括问答、自然语言推理、情感分析和文档排序等18项任务上取得了最先进结果的模型。

!python pytorch-transformers/examples/run_generation.py \

--model_type=xlnet \

--length=50 \

--model_name_or_path=xlnet-base-cased \

还有能够学习长期依赖的Transformer-XL,比标准Transformer快1800倍。

!python pytorch-transformers/examples/run_generation.py \

--model_type=transfo-xl \

--length=100 \

--model_name_or_path=transfo-xl-wt103 \

Transformers API调用示例代码(收藏)

import torch

from transformers import *

# transformer有一个统一的API

# 有10个Transformer结构和30个预训练权重模型。

#模型|分词|预训练权重

MODELS = [(BertModel, BertTokenizer, 'bert-base-uncased'),

(OpenAIGPTModel, OpenAIGPTTokenizer, 'openai-gpt'),

(GPT2Model, GPT2Tokenizer, 'gpt2'),

(CTRLModel, CTRLTokenizer, 'ctrl'),

(TransfoXLModel, TransfoXLTokenizer, 'transfo-xl-wt103'),

(XLNetModel, XLNetTokenizer, 'xlnet-base-cased'),

(XLMModel, XLMTokenizer, 'xlm-mlm-enfr-1024'),

(DistilBertModel, DistilBertTokenizer, 'distilbert-base-cased'),

(RobertaModel, RobertaTokenizer, 'roberta-base'),

(XLMRobertaModel, XLMRobertaTokenizer, 'xlm-roberta-base'),

]

# 要使用TensorFlow 2.0版本的模型,只需在类名前面加上“TF”,例如。“TFRobertaModel”是TF2.0版本的PyTorch模型“RobertaModel”

# 让我们用每个模型将一些文本编码成隐藏状态序列:

for model_class, tokenizer_class, pretrained_weights in MODELS:

# 加载pretrained模型/分词器

tokenizer = tokenizer_class.from_pretrained(pretrained_weights)

model = model_class.from_pretrained(pretrained_weights)

# 编码文本

input_ids = torch.tensor([tokenizer.encode("Here is some text to encode", add_special_tokens=True)]) # 添加特殊标记

with torch.no_grad():

last_hidden_states = model(input_ids)[0] # 模型输出是元组

# 每个架构都提供了几个类,用于对下游任务进行调优,例如。

BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,

BertForSequenceClassification, BertForTokenClassification, BertForQuestionAnswering]

# 体系结构的所有类都可以从该体系结构的预训练权重开始

#注意,为微调添加的额外权重只在需要接受下游任务的训练时初始化

pretrained_weights = 'bert-base-uncased'

tokenizer = BertTokenizer.from_pretrained(pretrained_weights)

for model_class in BERT_MODEL_CLASSES:

# 载入模型/分词器

model = model_class.from_pretrained(pretrained_weights)

# 模型可以在每一层返回隐藏状态和带有注意力机制的权值

model = model_class.from_pretrained(pretrained_weights,

output_hidden_states=True,

output_attentions=True)

input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])

all_hidden_states, all_attentions = model(input_ids)[-2:]

#模型与Torchscript兼容

model = model_class.from_pretrained(pretrained_weights, torchscript=True)

traced_model = torch.jit.trace(model, (input_ids,))

# 模型和分词的简单序列化

model.save_pretrained('./directory/to/save/') # 保存

model = model_class.from_pretrained('./directory/to/save/') # 重载

tokenizer.save_pretrained('./directory/to/save/') # 保存

tokenizer = BertTokenizer.from_pretrained('./directory/to/save/') # 重载

import tensorflow as tf

import tensorflow_datasets

from transformers import *

# 从预训练模型/词汇表中加载数据集、分词器、模型

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

model = TFBertForSequenceClassification.from_pretrained('bert-base-cased')

data = tensorflow_datasets.load('glue/mrpc')

# 准备数据集作为tf.data.Dataset的实例

train_dataset = glue_convert_examples_to_features(data['train'], tokenizer, max_length=128, task='mrpc')

valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer, max_length=128, task='mrpc')

train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)

valid_dataset = valid_dataset.batch(64)

# 准备训练:编写tf.keras模型与优化,损失和学习率调度

optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)

loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')

model.compile(optimizer=optimizer, loss=loss, metrics=[metric])

# 用tf.keras.Model.fit进行测试和评估

history = model.fit(train_dataset, epochs=2, steps_per_epoch=115,

validation_data=valid_dataset, validation_steps=7)

# 在PyTorch中加载TensorFlow模型进行检查

model.save_pretrained('./save/')

pytorch_model = BertForSequenceClassification.from_pretrained('./save/', from_tf=True)

#让我们看看我们的模型是否学会了这个任务

sentence_0 = "This research was consistent with his findings."

sentence_1 = "His findings were compatible with this research."

sentence_2 = "His findings were not compatible with this research."

inputs_1 = tokenizer.encode_plus(sentence_0, sentence_1, add_special_tokens=True, return_tensors='pt')

inputs_2 = tokenizer.encode_plus(sentence_0, sentence_2, add_special_tokens=True, return_tensors='pt')

pred_1 = pytorch_model(inputs_1['input_ids'], token_type_ids=inputs_1['token_type_ids'])[0].argmax().item()

pred_2 = pytorch_model(inputs_2['input_ids'], token_type_ids=inputs_2['token_type_ids'])[0].argmax().item()

print("sentence_1 is", "a paraphrase" if pred_1 else "not a paraphrase", "of sentence_0")

print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sentence_0")

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/249465
推荐阅读
相关标签
  

闽ICP备14008679号