当前位置:   article > 正文

自动驾驶感知——毫米波雷达_毫米波雷达输出什么数据

毫米波雷达输出什么数据

1. 雷达的基本概念

    无线电探测及测距(Radio Detection and Ranging), 发射电磁波并接收目标反射的回波信号,通过对比发射信号与回收信号,获取目标的位置、速度等信息。

1.1 毫米波雷达分类

    雷达的分类
• 所发射电磁波的频段,决定了雷达的基本性能特点
• 超视距雷达、微波雷达、毫米波雷达、激光雷达、…
在这里插入图片描述

  • 按照用途分类:军用,气象,导航,车载
  • 按照波长分类:米,分米,厘米,毫米
  • 按照波形分类:脉冲,连续波

按照波长和用途分类

  • 长波雷达(米,分米),分辨率低,穿透性强
    ➢一般用于广播,军事预警,卫星通讯等:
  • 短波雷达(厘米,毫米),分辨率高,穿透性差
    ➢一般用于测绘,短程通讯,车载应用等

按照波形分类

  • 脉冲雷达
    ➢通过脉冲发送和接收的时间差来确定目标的距离
    ➢不能确定目标的速度
  • 连续波雷达
    ➢发射信号在时间上是连续的
    ➢发射信号的频率是随着时间变化的(调频连续波)

1.2 信息的传输

◼ 调制:将调制信号(待传输信息)混合到载波信号(起到载运作
用的信号)的过程,可分为调频,调幅,调相。
◼ 解调:相反的过程,即从混合信号中恢复出待传输信息。
◼ 带宽:调制信号频谱的宽度,带宽高有利于传输更多数据。
在这里插入图片描述

  • 毫米波雷达使用的电磁波波长介于1-10mm,波长短、频段宽,比较 容易实现窄波束,雷达分辨率高,不易受干扰
  • 早期被应用于军事领域,随着雷达技术的发展与进步,毫米波雷达传 感器开始应用于汽车电子、无人机、智能交通等多个领域。

在这里插入图片描述

1.3 毫米波雷达的信号频段

频率24GHz77GHz
探测范围 探测距离短,探测角度(FOV)大探测距离长,探测角度小
频段限制24GHz频段因与其他无线电设备共享,必须限制发射功率独占频段
带宽小于1GHz可达4GHz
优势在中短距测距有明显优势;探测范围FOV更大波长更短波束更窄;识别精度高且穿透力更强;带宽更大可兼顾远中近不同场景
代表产品大陆 ARS208,Hella 24GHz角雷达大陆 ARS408,BOSCH LRR4

1.4 毫米波雷达工作原理

    在车载毫米波雷达中,目前主要有三种调制方案:调频连续波(Frequency
Modulated Continuous Wave, FMCW),频移键控(Frequency Shift Keying, FSK)以及相移键控(Phase Shift Keying, PSK)。
    主流车载毫米波雷达所采用的的调制信号为调频连续波FMCW。

    其基本原理是在发射端发射一个频率随时间变化的信号,经目标反射后被接收机接收,通过反射信号和接收信号之间的混频,得出两个信号的频率差,随后通过电磁波传播公式多普勒效应公式求出目标距离和速度.

⚫ 测距测速是通过分析发射和接收的调频连续之间的区别来实现
⚫ 测量角度是通过计算不同天线单元之间的延时差来计算

1.4.1 毫米波雷达测速测距的数学原理

在这里插入图片描述
    这里首先分析 0 < t < T / 2 0<t<T/2 0<t<T/2 时收发信号的关系。在调频连续波雷达中,本振信号的频率在半个周期内是随时间成线性关系变化的,即 f L O ( t ) = f 0 + k t ( 0 < t < T 2 ) {f_{LO}}(t) = {f_0} + kt{\rm{ }}(0 < t < \frac{T}{2}) fLO(t)=f0+kt(0<t<2T)    其中 f 0 f_0 f0 是初始时刻的频率, k k k 是频率随时间变化的斜率。因为频率是相位关于时间 t t t 的导数,因此相位可以表示为频率关于时间 t t t 的积分,即 ϕ ( t ) = 2 π ∫ f ( t ) d t = π k t 2 + 2 π f 0 t + ϕ 0 \phi (t) = 2\pi \int {f(t)dt = \pi k{t^2} + 2\pi {f_0}t + {\phi _0}} ϕ(t)=2πf(t)dt=πkt2+2πf0t+ϕ0    其中 ϕ 0 \phi _0 ϕ0 是初始相位,因此本振信号关于时间的表达式可以写成 V L O ( t ) = V 1 cos ⁡ ( π k t 2 + 2 π f 0 t + ϕ 0 ) {V_{LO}}(t) = {V_1}\cos (\pi k{t^2} + 2\pi {f_0}t + {\phi _0}) VLO(t)=V1cos(πkt2+2πf0t+ϕ0)    其中 V 1 V_1 V1 是本振信号的幅度,由于该本振信号的频率是随时间呈连续周期性变化的,所以称之为调频连续波,本振信号经过功率放大器(Power Amplifier, PA)放大后,由天线发射到自由空间中,这里把 PA 和天线的总增益记为 G 1 G_1 G1,则发射信号为 V T X ( t ) = G 1 V 1 cos ⁡ ( π k t 2 + 2 π f 0 t + ϕ 0 ) {V_{TX}}(t) = {G_1}{V_1}\cos (\pi k{t^2} + 2\pi {f_0}t + {\phi _0}) VTX(t)=G1V1cos(πkt2+2πf0t+ϕ0)    该信号经过空气传播到目标表面,被目标反射,最后由接收机接收,信号往返的传播时间为 τ τ τ,若雷达和目标的距离为 r ( t ) r(t) r(t),则 τ = 2 r ( t ) c = 2 ( r 0 + v t ) c \tau = \frac{{2r(t)}}{c} = \frac{{2({r_0} + vt)}}{c} τ=c2r(t)=c2(r0+vt)    其中 c c c 为电磁波在空气中的传播速度, r 0 r_0 r0 是初始距离, v v v 为雷达和目标间的相对速度。
    电磁波在空气中传播和被目标反射的过程也会带来一定损耗,损耗系数记作 α 1 α_1 α1,则接收信号可以表示为 V R X ( t ) = α 1 G 1 V 1 cos ⁡ ( π k ( t − τ ) 2 + 2 π f 0 ( t − τ ) + ϕ 0 ) {V_{RX}}(t) = {\alpha _1}{G_1}{V_1}\cos (\pi k{(t - \tau )^2} + 2\pi {f_0}(t - \tau ) + {\phi _0}) VRX(t)=α1G1V1cos(πk(tτ)2+2πf0(tτ)+ϕ0)    这里再介绍以下混频的概念:
混频:输出信号频率等于两输入信号频率之和、差或其他组合的电路。
常用方法: cos ⁡ α ⋅ cos ⁡ β = [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] / 2 \cos \alpha \cdot \cos \beta = [\cos (\alpha + \beta ) + \cos (\alpha - \beta )]/2 cosαcosβ=[cos(α+β)+cos(αβ)]/2

    接收信号经过低噪声放大器(Low Noise Amplifier, LNA)放大后,与本振信号进行混频。混频后的信号包含了高频分量和低频分量,将该信号通过一个低通滤波器可得(假设通带内的增益为单位增益): V I F ( t ) = α 1 G 1 G 2 V 1 2 cos ⁡ ( 2 π k τ t + 2 π f 0 τ − π k τ 2 ) {V_{IF}}(t) = {\alpha _1}{G_1}{G_2}{V_1}^2\cos (2\pi k\tau t + 2\pi {f_0}\tau - \pi k{\tau ^2}) VIF(t)=α1G1G2V12cos(2πkτt+2πf0τπkτ2)    求导,即可求出中频频率(混频后的信号经低通滤波后所得低频分量,又叫中频频率 f

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/288030
推荐阅读
相关标签