赞
踩
MATLAB实现贝叶斯优化CNN-LSTM(卷积长短期记忆神经网络)时间序列预测,Bayes-CNN-LSTM模型股票价格预测
%% 搭建CNN模型 rng('default'); inputSize = 1; numEpochs = 200; batchSize = 16; nTraining = length(label); % CONV -> ReLU -> MAXPOOL -> FC -> DROPOUT -> FC -> SOFTMAX layers = [ ... sequenceInputLayer(inputSize) convolution1dLayer(5,100,'Padding',2,'Stride', 1) % 卷积层 1 batchNormalizationLayer; reluLayer(); % ReLU 层 1 convolution1dLayer(5,70,'Padding',2,'Stride', 1); % 卷积层 2 batchNormalizationLayer; maxPooling1dLayer(1,'Stride',1); % 最大池化 池化层 1 convolution1dLayer(3,50,'Padding',1,'Stride', 1); % 卷积层 3 reluLayer(); % ReLU 层 3 maxPooling1dLayer(1,'Stride',1); convolution1dLayer(3,40,'Padding',1,'Stride', 1); % 卷积层 4 reluLayer(); % ReLU 层 2 maxPooling1dLayer(1,'Stride',1); % 最大池化 池化层 1 fullyConnectedLayer(1,'Name','fc1') regressionLayer] options = trainingOptions('adam',... 'InitialLearnRate',1e-3,...% 学习率 'MiniBatchSize', batchSize, ... 'MaxEpochs',numEpochs); [net,info1] = trainNetwork(input_train,output_train,layers,options); %% 提取特征 fLayer = 'fc1'; trainingFeatures = activations(net, input_train, fLayer, ... 'MiniBatchSize', 16, 'OutputAs', 'channels'); trainingFeatures=cell2mat(trainingFeatures); for i=1:length(trainingFeatures) TF{i}=double(trainingFeatures(:,i)); end %% 搭建LSTM模型 inputSize = 1; numHiddenUnits = 100; layers = [ ... sequenceInputLayer(inputSize) lstmLayer(numHiddenUnits,'OutputMode','last') lstmLayer(numHiddenUnits-30) lstmLayer(numHiddenUnits-60) fullyConnectedLayer(1) regressionLayer] options = trainingOptions('adam',... 'InitialLearnRate',1e-3,...% 学习率 'MiniBatchSize', 8, ... 'MaxEpochs',50, ... 'Plots','training-progress'); [net1,info1] = trainNetwork(TF,output_train',layers,options); %% 测试集 % 测试集提取特征 testingFeatures = activations(net, input_test, fLayer, ... 'MiniBatchSize', 8, 'OutputAs', 'channels'); testingFeatures=cell2mat(testingFeatures); for i=1:length(testingFeatures) TFT{i}=double(testingFeatures(:,i)); end YPred = predict(net1,TFT); YPred=mapminmax('reverse',YPred,yopt);
贝叶斯优化可以充分利用历史调优信息,减少不必要的目标函数评估,并改进参数搜索效率。在模型训练过程中,使用ADAM优化算法进一步优化网络权重参数,使得预测结果更准确。提出的基于超参数的优化搜索方案结合股票预测应采用CNN-LSTM模型,选用的模型具有更高的预测精度和泛化能力。
[1] https://blog.csdn.net/kjm13182345320/article/details/127261869?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/127261869?spm=1001.2014.3001.5501
[3] G. W. Jiao, and C. Hu, G: Gun barrel life evaluation and prediction, J. Ordnance Equip.Eng. 39, 66 (2018).
[4] M. T. Li et al., Barrel life prediction method based on inner surface melting layer theory,J.Gun Launch Control, 5–8 (2009).
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。