赞
踩
在进行可视化及聚类分析前,我们需要为IDLE安装sklearn库,scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以让用户简单、高效地进行数据挖掘和数据分析。
以下皆是在cmd命令行进行。
目录
- #安装 numpy、scipy、matplotlib三个库
- pip install numpy
- pip install scipy
- pip install matplotlib
- pip install sklearn
-
- #导入包
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
-
-
- from pylab import *
- mpl.rcParams['font.sans-serif'] = ['SimHei'] #用于画图时显示中文
-
-
- from sklearn.datasets import load_iris #导入数据集iris
- iris = load_iris() #载入数据集
- print(iris.data) #打印输出数据集
-
-
- #共150条记录,分别代表50条山鸢尾 (Iris-setosa)、变色鸢尾(Iris-versicolor)、维吉尼亚鸢尾(Iris-virginica)
- print(iris.target)
-
- iris.data.shape # iris数据集150行4列的二维数组
-
-
-
-
- url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
- names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']
- dataset = pd.read_csv(url, names=names)
-
-
- #************************可视化显示*************************************#
- #显示直方图
- zhifangtu=dataset.hist() #数据直方图histograms
- plt.show(zhifangtu.data)
-
-
- print(dataset.describe())
-
-
- #显示散点图
- sandian=dataset.plot(x='花萼-length', y='花萼-width', kind='scatter') #散点图,x轴表示花萼长度,y轴表示花萼宽度
- plt.show(sandian)
-
-
- #kde图
- plt.show(dataset.plot(kind='kde')) #KDE图,也被称作密度图(Kernel Density Estimate,核密度估计)
-
-
- #显示箱图
- #kind='box'绘制箱图,包含子图且子图的行列布局layout为2*2,子图共用x轴、y轴刻度,标签为False
- xiangtu = dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
-
- plt.show(xiangtu.data)
-
-
-
- #*****************************线性回归*************************************#
-
- pos = pd.DataFrame(dataset)
- #获取花瓣的长和宽,转换Series为ndarray
- x = pos['花瓣-length'].values
- y = pos['花瓣-width'].values
- x = x.reshape(len(x),1)
- y = y.reshape(len(y),1)
-
- from sklearn.linear_model import LinearRegression
- clf = LinearRegression()
- clf.fit(x,y)
- pre = clf.predict(x)
-
- plt.scatter(x,y,s=100)
- plt.plot(x,pre,'r-',linewidth=4)
- for idx, m in enumerate(x):
- plt.plot([m,m],[y[idx],pre[idx]], 'g-')
- plt.show()
-
- #*****************************决策树分析***********************************#
-
- from sklearn.datasets import load_iris
- from sklearn.tree import DecisionTreeClassifier
- iris = load_iris()
- clf = DecisionTreeClassifier()
- clf.fit(iris.data, iris.target)
- predicted = clf.predict(iris.data)
-
- #获取花卉两列数据集
- L1 = pos['花萼-length'].values
- L2 = pos['花萼-width'].values
-
-
- import numpy as np
- import matplotlib.pyplot as plt
- plt.scatter(L1, L2, c=predicted, marker='x') #cmap=plt.cm.Paired
- plt.title("DTC")
- plt.show()
-
-
- #将iris_data分为70%的训练,30%的进行预测 然后进行优化 输出准确率、召回率等,优化后的完整代码如下:
-
-
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.model_selection import train_test_split
- from sklearn import metrics
-
- x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target, test_size=0.3)
- clf = DecisionTreeClassifier()
- clf.fit(x_train,y_train)
- predict_target = clf.predict(x_test)
-
- print(sum(predict_target == y_test)) #预测结果与真实结果比对
- print(metrics.classification_report(y_test,predict_target))
- print(metrics.confusion_matrix(y_test,predict_target))
-
- L1 = [n[0] for n in x_test]
- L2 = [n[1] for n in x_test]
- plt.scatter(L1,L2, c=predict_target,marker='x')
- plt.title('决策树分类器')
- plt.show()
-
-
-
- #*****************************KMeans聚类分析*******************************#
-
- from sklearn.cluster import KMeans
- from sklearn.datasets import load_iris
- iris = load_iris()
- clf = KMeans()
- clf.fit(iris.data,iris.target)
- predicted = clf.predict(iris.data)
-
- pos = pd.DataFrame(dataset)
- L1 = pos['花萼-length'].values
- L2 = pos['花萼-width'].values
-
- plt.scatter(L1, L2, c=predicted, marker='s',s=100,cmap=plt.cm.Paired)
- plt.title("KMeans聚类分析")
- plt.show()
-
- #*******************************************
-
-
- from sklearn.datasets import load_iris
- from sklearn.tree import DecisionTreeClassifier
-
- # Parameters
- n_classes = 3
- plot_colors = "ryb"
- plot_step = 0.02
-
- # Load data
- iris = load_iris()
-
- for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
- [1, 2], [1, 3], [2, 3]]):
- # We only take the two corresponding features
- X = iris.data[:, pair]
- y = iris.target
-
- # Train
- clf = DecisionTreeClassifier().fit(X, y)
-
- # Plot the decision boundary
- plt.subplot(2, 3, pairidx + 1)
-
- x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
- y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
- xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
- np.arange(y_min, y_max, plot_step))
- plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
-
- Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
- Z = Z.reshape(xx.shape)
- cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)
-
- plt.xlabel(iris.feature_names[pair[0]])
- plt.ylabel(iris.feature_names[pair[1]])
-
- # Plot the training points
- for i, color in zip(range(n_classes), plot_colors):
- idx = np.where(y == i)
- plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
- cmap=plt.cm.RdYlBu, edgecolor='black', s=15)
-
- plt.suptitle("Decision surface of a decision tree using paired features")
- plt.legend(loc='lower right', borderpad=0, handletextpad=0)
- plt.axis("tight")
- plt.show()

安装sklearn前。需要先安装 numpy、scipy、matplotlib三个库。
- pip install numpy
- pip install scipy
- pip install matplotlib
- pip install sklearn
采用Python的Sklearn机器学习库中自带的数据集——鸢尾花数据集。简单分析数据集之间特征的关系图,根据花瓣长度、花瓣宽度、花萼长度、花萼宽度四个特征进行绘图
Iris plants 数据集可以从KEEL dataset
数据集网站获取,也可以直接从Sklearn.datasets
机器学习包得到。数据集共包含4个特征变量、1个类别变量,共有150个样本。类别变量分别对应鸢尾花的三个亚属,分别是山鸢尾 (Iris-setosa)
、变色鸢尾(Iris-versicolor)
和维吉尼亚鸢尾(Iris-virginica)
分别用[0,1,2]
来做映射
- import pandas as pd
- import numpy as np
- import matplotlib.pyplot as plt
-
-
- from pylab import *
- mpl.rcParams['font.sans-serif'] = ['SimHei'] #用于画图时显示中文
-
-
- from sklearn.datasets import load_iris #导入数据集iris
- iris = load_iris() #载入数据集
- print(iris.data) #打印输出显示
- #共150条记录,分别代表50条山鸢尾 (Iris-setosa)、变色鸢尾(Iris-versicolor)、维吉尼亚鸢尾(Iris-virginica)
- print(iris.target)
-
- iris.data.shape # iris数据集150行4列的二维数组
- url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
- names = ['花萼-length', '花萼-width', '花瓣-length', '花瓣-width', 'class']
- dataset = pd.read_csv(url, names=names)
- zhifangtu=dataset.hist() #数据直方图histograms
-
- plt.show(zhifangtu) #显示直方图
print(dataset.describe())
- dataset.plot(x='花萼-length', y='花萼-width', kind='scatter') #散点图,x轴表示花萼长度,y轴表示花萼宽度
- plt.show(dataset.plot) #显示散点图
plt.show(dataset.plot(kind='kde')) #KDE图,也被称作密度图(Kernel Density Estimate,核密度估计)
- #kind='box'绘制箱图,包含子图且子图的行列布局layout为2*2,子图共用x轴、y轴刻度,标签为False
- xiangtu = dataset.plot(kind='box', subplots=True, layout=(2,2), sharex=False, sharey=False)
-
- plt.show(xiangtu)#显示箱图
RadViz
是一种可视化多维数据的方式。它基于基本的弹簧压力最小化算法(在复杂网络分析中也会经常应用)。简单来说,将一组点放在一个平面上,每一个点代表一个属性,我们案例中有四个点,被放在一个单位圆上,接下来你可以设想每个数据集通过一个弹簧联接到每个点上,弹力和他们属性值成正比(属性值已经标准化),数据集在平面上的位置是弹簧的均衡位置。不同类的样本用不同颜色表示。
- from pandas.plotting import radviz
- radviz(dataset,'class')
Andrews
曲线将每个样本的属性值转化为傅里叶序列的系数来创建曲线。通过将每一类曲线标成不同颜色可以可视化聚类数据,属于相同类别的样本的曲线通常更加接近并构成了更大的结构。
- from pandas.plotting import andrews_curves
- andrews_curves(dataset,'class')
平行坐标也是一种多维可视化技术。它可以看到数据中的类别以及从视觉上估计其他的统计量。使用平行坐标时,每个点用线段联接。每个垂直的线代表一个属性。一组联接的线段表示一个数据点。可能是一类的数据点会更加接近。
- from pandas.plotting import parallel_coordinates
- parallel_coordinates(dataset,'class')
scatter_matrix
散点矩阵图代表了两变量的相关程度,如果呈现出沿着对角线分布的趋势,说明它们的相关性较高。
- from pandas.plotting import scatter_matrix
- scatter_matrix(dataset, alpha=0.2, figsize=(6, 6), diagonal='kde')
采用线性回归算法对鸢尾花的特征数据进行分析,预测花瓣长度、花瓣宽度、花萼长度、花萼宽度四个特征之间的线性关系。核心代码如下:
- pos = pd.DataFrame(dataset)
- #获取花瓣的长和宽,转换Series为ndarray
- x = pos['花瓣-length'].values
- y = pos['花瓣-width'].values
- x = x.reshape(len(x),1)
- y = y.reshape(len(y),1)
-
- from sklearn.linear_model import LinearRegression
- clf = LinearRegression()
- clf.fit(x,y)
- pre = clf.predict(x)
-
- plt.scatter(x,y,s=100)
- plt.plot(x,pre,'r-',linewidth=4)
- for idx, m in enumerate(x):
- plt.plot([m,m],[y[idx],pre[idx]], 'g-')
- plt.show()

Sklearn机器学习包中,决策树实现类是DecisionTreeClassifier,能够执行数据集的多类分类。
- from sklearn.datasets import load_iris
- from sklearn.tree import DecisionTreeClassifier
- iris = load_iris()
- clf = DecisionTreeClassifier()
- clf.fit(iris.data, iris.target)
- predicted = clf.predict(iris.data)
-
- #获取花卉两列数据集
- L1 = pos['花萼-length'].values
- L2 = pos['花萼-width'].values
-
-
- import numpy as np
- import matplotlib.pyplot as plt
- plt.scatter(L1, L2, c=predicted, marker='x') #cmap=plt.cm.Paired
- plt.title("DTC")
- plt.show()

将iris_data分为70%的训练,30%的进行预测 然后进行优化 输出准确率、召回率等,优化后的完整代码如下:
- from sklearn.tree import DecisionTreeClassifier
- from sklearn.model_selection import train_test_split
- from sklearn import metrics
-
- x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target, test_size=0.3)
- clf = DecisionTreeClassifier()
- clf.fit(x_train,y_train)
- predict_target = clf.predict(x_test)
-
- print(sum(predict_target == y_test)) #预测结果与真实结果比对
- print(metrics.classification_report(y_test,predict_target))
- print(metrics.confusion_matrix(y_test,predict_target))
-
- L1 = [n[0] for n in x_test]
- L2 = [n[1] for n in x_test]
- plt.scatter(L1,L2, c=predict_target,marker='x')
- plt.title('DecisionTreeClassifier')
- plt.show()

- from sklearn.cluster import KMeans
- from sklearn.datasets import load_iris
- iris = load_iris()
- clf = KMeans()
- clf.fit(iris.data,iris.target)
- predicted = clf.predict(iris.data)
-
- pos = pd.DataFrame(dataset)
- L1 = pos['花萼-length'].values
- L2 = pos['花萼-width'].values
-
- plt.scatter(L1, L2, c=predicted, marker='s',s=100,cmap=plt.cm.Paired)
- plt.title("KMeans聚类分析")
- plt.show()
- from sklearn.datasets import load_iris
- from sklearn.tree import DecisionTreeClassifier
-
- # Parameters
- n_classes = 3
- plot_colors = "ryb"
- plot_step = 0.02
-
- # Load data
- iris = load_iris()
-
- for pairidx, pair in enumerate([[0, 1], [0, 2], [0, 3],
- [1, 2], [1, 3], [2, 3]]):
- # We only take the two corresponding features
- X = iris.data[:, pair]
- y = iris.target
-
- # Train
- clf = DecisionTreeClassifier().fit(X, y)
-
- # Plot the decision boundary
- plt.subplot(2, 3, pairidx + 1)
-
- x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
- y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
- xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
- np.arange(y_min, y_max, plot_step))
- plt.tight_layout(h_pad=0.5, w_pad=0.5, pad=2.5)
-
- Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
- Z = Z.reshape(xx.shape)
- cs = plt.contourf(xx, yy, Z, cmap=plt.cm.RdYlBu)
-
- plt.xlabel(iris.feature_names[pair[0]])
- plt.ylabel(iris.feature_names[pair[1]])
-
- # Plot the training points
- for i, color in zip(range(n_classes), plot_colors):
- idx = np.where(y == i)
- plt.scatter(X[idx, 0], X[idx, 1], c=color, label=iris.target_names[i],
- cmap=plt.cm.RdYlBu, edgecolor='black', s=15)
-
- plt.suptitle("Decision surface of a decision tree using paired features")
- plt.legend(loc='lower right', borderpad=0, handletextpad=0)
- plt.axis("tight")
- plt.show()

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。