赞
踩
目录
我的一篇博客已经提到,这里不再赘述:
YOLO V8语义分割模型部署-CSDN博客YOLO V8语义分割模型部署
https://blog.csdn.net/qq_41694024/article/details/133983334
我们采用一键安装的方式:
pip install labelme
这个对python版本有要求,python版本最好是3.8。如果不是那就再茶ungjiange虚拟环境吧。
直接命令行输入labelme启动,可能会出现这个问题:
(yo) liuhongwei@liuhongwei-Legion-Y9000P-IRX8H:~/Desktop/ultralytics/examples/YOLOv8-CPP-Inference/build$ labelme [INFO ] __init__:get_config:70 - Loading config file from: /home/liuhongwei/.labelmerc QObject::moveToThread: Current thread (0x564cffaed340) is not the object's thread (0x564d01248510). Cannot move to target thread (0x564cffaed340) qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "/home/liuhongwei/anaconda3/envs/yo/lib/python3.8/site-packages/cv2/qt/plugins" even though it was found. This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem. Available platform plugins are: xcb, eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl.这是QT版本太高了.....,降低QT版本:
pip install pyqt5==5.14.0
再次启动labelme:
可以用了。
label使用就是打开一个含有图像的文件夹就可以,使用很简单,上过本科的一看界面就会,给大家展示一张标注结果:
先装依赖:
pip install pycocotools
用我的脚本将labelme形式的标注文件转化为yolo格式的文件:
''' Created on Oct 23, 2023 @author: Liuhongwei ''' import os import sys import argparse import shutil import math from collections import OrderedDict import json import cv2 import PIL.Image from sklearn.model_selection import train_test_split from labelme import utils class Labelme2YOLO(object): def __init__(self, json_dir): self._json_dir = json_dir self._label_id_map = self._get_label_id_map(self._json_dir) def _make_train_val_dir(self): self._label_dir_path = os.path.join(self._json_dir, 'YOLODataset/labels/') self._image_dir_path = os.path.join(self._json_dir, 'YOLODataset/images/') for yolo_path in (os.path.join(self._label_dir_path + 'train/'), os.path.join(self._label_dir_path + 'val/'), os.path.join(self._image_dir_path + 'train/'), os.path.join(self._image_dir_path + 'val/')): if os.path.exists(yolo_path): shutil.rmtree(yolo_path) os.makedirs(yolo_path) def _get_label_id_map(self, json_dir): label_set = set() for file_name in os.listdir(json_dir): if file_name.endswith('json'): json_path = os.path.join(json_dir, file_name) data = json.load(open(json_path)) for shape in data['shapes']: label_set.add(shape['label']) return OrderedDict([(label, label_id) \ for label_id, label in enumerate(label_set)]) def _train_test_split(self, folders, json_names, val_size): if len(folders) > 0 and 'train' in folders and 'val' in folders: train_folder = os.path.join(self._json_dir, 'train/') train_json_names = [train_sample_name + '.json' \ for train_sample_name in os.listdir(train_folder) \ if os.path.isdir(os.path.join(train_folder, train_sample_name))] val_folder = os.path.join(self._json_dir, 'val/') val_json_names = [val_sample_name + '.json' \ for val_sample_name in os.listdir(val_folder) \ if os.path.isdir(os.path.join(val_folder, val_sample_name))] return train_json_names, val_json_names train_idxs, val_idxs = train_test_split(range(len(json_names)), test_size=val_size) train_json_names = [json_names[train_idx] for train_idx in train_idxs] val_json_names = [json_names[val_idx] for val_idx in val_idxs] return train_json_names, val_json_names def convert(self, val_size): json_names = [file_name for file_name in os.listdir(self._json_dir) \ if os.path.isfile(os.path.join(self._json_dir, file_name)) and \ file_name.endswith('.json')] folders = [file_name for file_name in os.listdir(self._json_dir) \ if os.path.isdir(os.path.join(self._json_dir, file_name))] train_json_names, val_json_names = self._train_test_split(folders, json_names, val_size) self._make_train_val_dir() # convert labelme object to yolo format object, and save them to files # also get image from labelme json file and save them under images folder for target_dir, json_names in zip(('train/', 'val/'), (train_json_names, val_json_names)): for json_name in json_names: json_path = os.path.join(self._json_dir, json_name) json_data = json.load(open(json_path)) print('Converting %s for %s ...' % (json_name, target_dir.replace('/', ''))) img_path = self._save_yolo_image(json_data, json_name, self._image_dir_path, target_dir) yolo_obj_list = self._get_yolo_object_list(json_data, img_path) self._save_yolo_label(json_name, self._label_dir_path, target_dir, yolo_obj_list) print('Generating dataset.yaml file ...') self._save_dataset_yaml() def convert_one(self, json_name): json_path = os.path.join(self._json_dir, json_name) json_data = json.load(open(json_path)) print('Converting %s ...' % json_name) img_path = self._save_yolo_image(json_data, json_name, self._json_dir, '') yolo_obj_list = self._get_yolo_object_list(json_data, img_path) self._save_yolo_label(json_name, self._json_dir, '', yolo_obj_list) def _get_yolo_object_list(self, json_data, img_path): yolo_obj_list = [] img_h, img_w, _ = cv2.imread(img_path).shape for shape in json_data['shapes']: # labelme circle shape is different from others # it only has 2 points, 1st is circle center, 2nd is drag end point if shape['shape_type'] == 'circle': yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w) else: yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w) yolo_obj_list.append(yolo_obj) return yolo_obj_list def _get_circle_shape_yolo_object(self, shape, img_h, img_w): obj_center_x, obj_center_y = shape['points'][0] radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 + (obj_center_y - shape['points'][1][1]) ** 2) obj_w = 2 * radius obj_h = 2 * radius yolo_center_x= round(float(obj_center_x / img_w), 6) yolo_center_y = round(float(obj_center_y / img_h), 6) yolo_w = round(float(obj_w / img_w), 6) yolo_h = round(float(obj_h / img_h), 6) label_id = self._label_id_map[shape['label']] return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h def _get_other_shape_yolo_object(self, shape, img_h, img_w): def __get_object_desc(obj_port_list): __get_dist = lambda int_list: max(int_list) - min(int_list) x_lists = [port[0] for port in obj_port_list] y_lists = [port[1] for port in obj_port_list] return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists) obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points']) yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6) yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6) yolo_w = round(float(obj_w / img_w), 6) yolo_h = round(float(obj_h / img_h), 6) label_id = self._label_id_map[shape['label']] return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list): txt_path = os.path.join(label_dir_path, target_dir, json_name.replace('.json', '.txt')) with open(txt_path, 'w+') as f: for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list): yolo_obj_line = '%s %s %s %s %s\n' % yolo_obj \ if yolo_obj_idx + 1 != len(yolo_obj_list) else \ '%s %s %s %s %s' % yolo_obj f.write(yolo_obj_line) def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir): img_name = json_name.replace('.json', '.png') img_path = os.path.join(image_dir_path, target_dir,img_name) if not os.path.exists(img_path): img = utils.img_b64_to_arr(json_data['imageData']) PIL.Image.fromarray(img).save(img_path) return img_path def _save_dataset_yaml(self): yaml_path = os.path.join(self._json_dir, 'YOLODataset/', 'dataset.yaml') with open(yaml_path, 'w+') as yaml_file: yaml_file.write('train: %s\n' % \ os.path.join(self._image_dir_path, 'train/')) yaml_file.write('val: %s\n\n' % \ os.path.join(self._image_dir_path, 'val/')) yaml_file.write('nc: %i\n\n' % len(self._label_id_map)) names_str = '' for label, _ in self._label_id_map.items(): names_str += "'%s', " % label names_str = names_str.rstrip(', ') yaml_file.write('names: [%s]' % names_str) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--json_dir',type=str, help='Please input the path of the labelme json files.') parser.add_argument('--val_size',type=float, nargs='?', default=None, help='Please input the validation dataset size, for example 0.1 ') parser.add_argument('--json_name',type=str, nargs='?', default=None, help='If you put json name, it would convert only one json file to YOLO.') args = parser.parse_args(sys.argv[1:]) convertor = Labelme2YOLO(args.json_dir) if args.json_name is None: convertor.convert(val_size=args.val_size) else: convertor.convert_one(args.json_name)将标注文件全部放在labelmeannotation文件夹内:
启动脚本,参数1为这个文件夹,参数2为val占数据集的比例,比如是0.1。命令如下:
python 222.py --json_dir labelmeannotation/ --val_size 0.1
开始转换ing:
转化完毕:
转化好的文件在labelmeannotation文件夹内。
我们把这个文件拷贝到yolo的主目录下:
新建一个文件default_copy.yaml,里面有几个部分注意修改。
# Ultralytics YOLO 本文内容由网友自发贡献,转载请注明出处:【wpsshop博客】推荐阅读
相关标签
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。