当前位置:   article > 正文

【JAVA面试题】探索多线程同步:ReentrantLock与synchronized的对比解析

【JAVA面试题】探索多线程同步:ReentrantLock与synchronized的对比解析

程序员如何搞副业?


579a429daf314744b995f37351b46548

强烈推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能

b004071ozy_05_amzn


引言:

多线程编程中,确保共享资源的安全访问是至关重要的。

为了避免数据竞争和不确定的结果,我们需要使用适当的同步机制来保护共享资源

Java 中提供了两种主要的线程同步机制:ReentrantLocksynchronized

虽然它们都可以实现线程同步,但在具体的应用中,我们需要根据需求和场景来选择合适的方法。

本文将介绍 ReentrantLocksynchronized 的异同点,并通过示例演示它们的应用场景和用法。


ReentrantLock介绍

ReentrantLock 是 Java 中用于实现锁的一个类,它提供了与 synchronized 关键字类似的功能,但更加灵活和强大。与 synchronized 相比,ReentrantLock 提供了更多的操作和控制选项。

  1. 可重入性(Reentrancy):

    synchronized 类似,ReentrantLock 支持线程的可重入性,即同一个线程可以多次获取同一个锁而不会造成死锁。

  2. 公平性(Fairness):

    ReentrantLock 可以选择是否公平地进行锁的获取。公平锁是指锁的获取按照线程请求的顺序来分配,而非公平锁则不保证这种顺序。公平锁可以避免某些线程长时间被阻塞的情况,但会带来一些性能损耗。

  3. 条件变量(Condition):

    ReentrantLock 提供了 Condition 接口,可以用来在锁上等待或者唤醒特定的条件。这使得在某些情况下,我们可以更加灵活地控制线程的等待和唤醒。

  4. 可中断性(Interruption):

    synchronized 不同,ReentrantLock 提供了可中断的获取锁的方法。即在等待锁的过程中,线程可以响应中断信号而提前退出等待。

  5. 超时获取(Timeout):

    ReentrantLock 提供了尝试获取锁的方法,允许线程在一定的时间内尝试获取锁,如果超过指定的时间仍未获取到锁,则返回失败。

使用 ReentrantLock 需要手动进行锁的获取和释放,相对于 synchronized 更加灵活,但也需要更加小心地处理锁的获取和释放,以避免出现死锁等问题。


synchronized 的介绍

synchronized 是 Java 中用于实现线程同步的关键字,可以用来确保多个线程不会同时访问共享资源,从而避免数据竞争和不确定的结果。

  1. 互斥性(Mutual Exclusion):

    synchronized 关键字可以应用于方法或代码块,确保同一时刻只有一个线程可以执行被 synchronized 修饰的代码,其他线程必须等待当前线程执行完毕才能执行该代码块或方法。

  2. 可见性(Visibility):

    通过synchronized关键字,线程在释放锁时会将修改的变量值刷新到主内存,从而保证了在不同线程间的可见性,即一个线程对共享变量的修改对其他线程是可见的。

  3. 原子性(Atomicity):

    synchronized 块中的代码被视为一个不可分割的整体,称为原子操作。这确保了在同一时刻只有一个线程可以执行 synchronized 块中的代码,从而避免了因多线程并发访问而导致的数据不一致问题。

  4. 隐式锁和释放:

    ReentrantLock 不同,synchronized 使用起来更加简洁,不需要显式地获取和释放锁,锁的获取和释放由 JVM 隐式地管理。

虽然 synchronized 简单易用,但也有一些限制,例如无法设置超时、不支持非块结构的条件等待。在性能方面,synchronized 相对于 ReentrantLock 可能会有一些性能开销,尤其是在高并发场景下。


ReentrantLock 和synchronized 的异同点

ReentrantLocksynchronized 都可以用于实现线程同步,但在实现细节、功能和使用方式上有一些异同点:

相同点:
  1. 实现线程同步

    ReentrantLocksynchronized 都可以确保多个线程之间对共享资源的访问是线程安全的,避免了数据竞争和不确定的结果。

  2. 可重入性

    两者都支持线程的可重入性,即同一个线程可以多次获取同一个锁而不会造成死锁。

  3. 内置的可见性和原子性

    无论是 ReentrantLock 还是 synchronized,在释放锁时都会将修改的变量值刷新到主内存,从而保证了在不同线程间的可见性,并且锁的获取和释放都是原子操作。

不同点:
  1. 灵活性和控制性

    • ReentrantLock 相比 synchronized 更加灵活,提供了更多的操作和控制选项,例如可中断性、公平性、超时获取等,以及条件变量的支持。
    • synchronized 使用起来更加简洁,不需要显式地获取和释放锁,锁的管理由 JVM 隐式地完成。
  2. 可中断性

    • ReentrantLock 支持可中断的锁获取操作,即在等待锁的过程中可以响应中断信号而提前退出等待。
    • synchronized 不支持可中断性,一旦线程进入等待状态,只能等待锁的释放。
  3. 公平性

    • ReentrantLock 可以选择是否公平地进行锁的获取,即锁的获取按照线程请求的顺序来分配。
    • synchronized 不提供公平性选项,它总是非公平的。
  4. 性能开销

    • 在性能方面,一般情况下 synchronized 的性能优于 ReentrantLock,因为 synchronized 的实现经过 JVM 的优化,而 ReentrantLock 的实现较为复杂,可能会有一些额外的性能开销。但在高并发场景下,ReentrantLock 的性能可能会更好,因为它提供了更多的控制选项,可以更好地适应特定的应用场景。

综上所述,选择使用 ReentrantLock 还是 synchronized 取决于具体的需求和应用场景,通常情况下建议优先考虑使用 synchronized,除非需要 ReentrantLock 提供的额外功能和灵活性。


ReentrantLock 和synchronized 的应用场景

ReentrantLocksynchronized 都可以用于实现线程同步,但它们的应用场景有一些差异:

ReentrantLock 的场景:
  1. 需要更灵活的锁控制

    如果需要更多的锁控制选项,例如可中断性、公平性、超时获取等,ReentrantLock 是一个更好的选择。例如,在某些情况下,需要能够在等待锁的过程中响应中断信号而提前退出等待,这时候就可以使用 ReentrantLock 的可中断锁。

  2. 需要实现读写分离锁

    ReentrantReadWriteLockReentrantLock 的一个扩展,提供了读写分离锁的功能,适用于读多写少的场景。

  3. 需要手动释放锁

    ReentrantLock 需要手动进行锁的获取和释放,这种手动释放锁的方式可能在某些场景下更加灵活,但也需要更小心地处理锁的获取和释放,以避免出现死锁等问题。

适合使用 synchronized 的场景:
  1. 简单的同步需求

    对于简单的同步需求,例如对单个方法或代码块进行同步,没有额外的锁控制需求,使用 synchronized 更加简洁和方便。

  2. 性能要求不是关键因素

    在性能要求不是关键因素的情况下,使用 synchronized 更加方便,因为它不需要额外的锁管理开销,而且 JVM 对其进行了优化。

  3. 易于理解和维护

    synchronized 使用起来更加简单,不需要手动释放锁,对于代码的可读性和维护性更加友好。

选择使用 ReentrantLock 还是 synchronized 取决于具体的需求和应用场景。

通常情况下,如果没有特殊的锁控制需求,并且性能要求不是关键因素,建议优先考虑使用 synchronized,因为它更简单、更方便。

而在需要更灵活的锁控制、或者性能要求较高的场景下,可以考虑使用 ReentrantLock


ReentrantLock 和synchronized 的应用实例

使用 ReentrantLock 实现线程同步:
import java.util.concurrent.locks.ReentrantLock;

public class ReentrantLockExample {
    private final ReentrantLock lock = new ReentrantLock();
    private int count = 0;

    public void increment() {
        lock.lock(); // 获取锁
        try {
            count++; // 临界区代码
        } finally {
            lock.unlock(); // 释放锁
        }
    }

    public int getCount() {
        return count;
    }

    public static void main(String[] args) {
        ReentrantLockExample example = new ReentrantLockExample();

        // 创建多个线程并启动
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    example.increment(); // 调用 increment 方法
                }
            }).start();
        }

        // 等待所有线程执行完毕
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // 输出最终的 count 值
        System.out.println("Final count: " + example.getCount());
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
使用 synchronized 实现线程同步:
public class SynchronizedExample {
    private int count = 0;

    public synchronized void increment() { // 使用 synchronized 关键字修饰方法
        count++; // 临界区代码
    }

    public int getCount() {
        return count;
    }

    public static void main(String[] args) {
        SynchronizedExample example = new SynchronizedExample();

        // 创建多个线程并启动
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                for (int j = 0; j < 1000; j++) {
                    example.increment(); // 调用 increment 方法
                }
            }).start();
        }

        // 等待所有线程执行完毕
        try {
            Thread.sleep(2000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        // 输出最终的 count 值
        System.out.println("Final count: " + example.getCount());
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34

总结:

在多线程编程中,选择合适的线程同步机制对于程序的性能和正确性至关重要。

ReentrantLocksynchronized 都是有效的线程同步机制,每种机制都有其优势和适用场景。

在实际开发中,我们应该根据具体的需求和场景来选择合适的机制,并且在编写多线程代码时,始终注意避免死锁和性能瓶颈等问题,以确保程序的正确性和高效性。


强烈推荐

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能

b004071ozy_05_amzn

专栏集锦

大佬们可以收藏以备不时之需:

Spring Boot 专栏:http://t.csdnimg.cn/peKde

ChatGPT 专栏:http://t.csdnimg.cn/cU0na

Java 专栏:http://t.csdnimg.cn/YUz5e

Go 专栏:http://t.csdnimg.cn/Jfryo

Netty 专栏:http://t.csdnimg.cn/0Mp1H

Redis 专栏:http://t.csdnimg.cn/JuTue

Mysql 专栏:http://t.csdnimg.cn/p1zU9

架构之路 专栏:http://t.csdnimg.cn/bXAPS


写在最后

感谢您的支持和鼓励!

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/491619
推荐阅读
相关标签