赞
踩
之前的文章spark集群的搭建基础上建立的,重复操作已经简写;
之前的配置中使用了master01、slave01、slave02、slave03;
本篇文章还要添加master02和CloudDeskTop两个节点,并配置好运行环境;
一、流程:
1、在搭建高可用集群之前需要先配置高可用,首先在master01上:
[hadoop@master01 ~]$ cd /software/spark-2.1.1/conf/
[hadoop@master01 conf]$ vi spark-env.sh
xport JAVA_HOME=/software/jdk1.7.0_79
export SCALA_HOME=/software/scala-2.11.8
export HADOOP_HOME=/software/hadoop-2.7.3
export HADOOP_CONF_DIR=/software/hadoop-2.7.3/etc/hadoop
#Spark历史服务分配的内存尺寸
export SPARK_DAEMON_MEMORY=512m
#这面的这一项就是Spark的高可用配置,如果是配置master的高可用,master就必须有;如果是slave的高可用,slave就必须有;但是建议都配置。
export SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=slave01:2181,slave02:2181,slave03:2181 -Dspark.deploy.zookeeper.dir=/spark"
#当启用了Spark的高可用之后,下面的这一项应该被注释掉(即不能再被启用,后面通过提交应用时使用--master参数指定高可用集群节点)
#export SPARK_MASTER_IP=master01
#export SPARK_WORKER_MEMORY=1500m
#export SPARK_EXECUTOR_MEMORY=100m
2、将master01节点上的Spark配置文件spark-env.sh同步拷贝到Spark集群上的每一个Worker节点
[hadoop@master01 software]$ scp -r spark-2.1.1/conf/spark-env.sh slave01:/software/spark-2.1.1/conf/
[hadoop@master01 software]$ scp -r spark-2.1.1/conf/spark-env.sh slave02:/software/spark-2.1.1/conf/
[hadoop@master01 software]$ scp -r spark-2.1.1/conf/spark-env.sh slave03:/software/spark-2.1.1/conf/
3、配置master02的高可用配置:
#拷贝Scala安装目录和Spark安装目录到master02节点
[hadoop@master01 software]$ scp -r scala-2.11.8 spark-2.1.1 master02:/software/
[hadoop@master02 software]$ su -lc "chown -R root:root /software/scala-2.11.8"
#拷贝环境配置/etc/profile到master02节点
[hadoop@master01 software]$ su -lc "scp -r /etc/profile master02:/etc/"
#让环境配置立即生效
[hadoop@master01 software]$ su -lc "source /etc/profile"
4、配置CloudDeskTop的高可用配置,方便在eclipse进行开发:
#拷贝Scala安装目录和Spark安装目录到CloudDeskTop节点
[hadoop@master01 software]$ scp -r scala-2.11.8 spark-2.1.1 CloudDeskTop:/software/
[hadoop@CloudDeskTop software]$ su -lc "chown -R root:root /software/scala-2.11.8"
#拷贝环境配置/etc/profile到CloudDeskTop节点
[hadoop@CloudDeskTop software]$ vi /etc/profile
- JAVA_HOME=/software/jdk1.7.0_79
- HADOOP_HOME=/software/hadoop-2.7.3
- HBASE_HOME=/software/hbase-1.2.6
- SQOOP_HOME=/software/sqoop-1.4.6
- SCALA_HOME=/software/scala-2.11.8
- SPARK_HOME=/software/spark-2.1.1
- PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/lib:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HBASE_HOME/bin:$SQOOP_HOME/bin:$SCALA_HOME/bin::$SPARK_HOME/bin:
- export PATH JAVA_HOME HADOOP_HOME HBASE_HOME SQOOP_HOME SCALA_HOME SPARK_HOME
#让环境配置立即生效:(大数据学习交流群:217770236 让我我们一起学习大数据)
[hadoop@CloudDeskTop software]$ source /etc/profile
二、启动spark集群
由于每次都要启动,比较麻烦,所以博主写了个简单的启动脚本:第一个同步时间的脚本在root用户下执行,后面的脚本在hadoop用户下执行;
同步时间synchronizedDate.sh
start-total.sh
start-total.sh
stop-total.sh
[hadoop@master01 install]$ sh start-total.sh
三、高可用集群测试:
使用浏览器访问:
http://master01的IP地址:8080/ #显示Status:ALIVE
http://master02的IP地址:8080/ #显示Status: STANDBY
感谢李永富老师提供的资深总结:
注意:通过上面的访问测试发现以下结论:
0)、ZK保存的集群状态数据也称为元数据,保存的元数据包括:worker、driver、application;
1)、Spark启动时,ZK根据Spark配置文件slaves中的worker配置项使用排除法找到需要启动的master节点(除了在slaves文件中被定义为worker节点以外的节点都有可能被选举为master节点来启动)
2)、ZK集群将所有启动了master进程的节点纳入到高可用集群中的节点来进行管理;
3)、如果处于alive状态的master节点宕机,则ZK集群会自动将其alive状态切换到高可用集群中的另一个节点上继续提供服务;如果宕机的master恢复则alive状态并不会恢复回去而是继续使用当前的alive节点,这说明了ZK实现的是双主或多主模式的高可用集群;
4)、Spark集群中master节点的高可用可以设置的节点数多余两个(高可用集群节点数可以大于2);
5)、高可用集群中作为active节点的master则是由ZK集群来确定的,alive的master宕机之后同样由ZK来决定新的alive的master节点,当新的alive的master节点确定好之后由该新的alive的master节点去主动通知客户端(spark-shell、spark-submit)来连接它自己(这是服务端主动连接客户端并通知客户端去连接服务端自己的过程,这个过程与Hadoop的客户端连接高可用集群不同,Hadoop是通过hadoop客户端主动识别高可用集群中的active节点的master);
6)、Hadoop与Spark的高可用都是基于ZK的双主或多主模式,而不是类同于KP的主备模式,双主模式与主备模式的区别在于;
双主模式:充当master的主机是并列的,没有优先级之分,双主切换的条件是其中一台master宕掉之后切换到另一台master
主备模式:充当master的主机不是并列的,存在优先级(优先级:主>备),主备模式切换的条件有两种:
A、主master宕掉之后自动切换到备master
B、主master恢复之后自动切换回主master
四、运行测试:
#删除以前的老的输出目录
[hadoop@CloudDeskTop install]$ hdfs dfs -rm -r /spark/output
1、准备测试所需数据
- [hadoop@CloudDeskTop install]$ hdfs dfs -ls /spark
- Found 1 items
- drwxr-xr-x - hadoop supergroup 0 2018-01-05 15:14 /spark/input
- [hadoop@CloudDeskTop install]$ hdfs dfs -ls /spark/input
- Found 1 items
- -rw-r--r-- 3 hadoop supergroup 66 2018-01-05 15:14 /spark/input/wordcount
- [hadoop@CloudDeskTop install]$ hdfs dfs -cat /spark/input/wordcount
- my name is ligang
- my age is 35
- my height is 1.67
- my weight is 118
2、运行spark-shell和spark-submit时需要使用--master参数同时指定高可用集群的所有节点,节点之间使用英文逗号分割,如下:
1)、使用spark-shell
[hadoop@CloudDeskTop bin]$ pwd
/software/spark-2.1.1/bin
[hadoop@CloudDeskTop bin]$ ./spark-shell --master spark://master01:7077,master02:7077
scala> sc.textFile("/spark/input").flatMap(_.split(" ")).map(word=>(word,1)).reduceByKey(_+_).map(entry=>(entry._2,entry._1)).sortByKey(false,1).map(entry=>(entry._2,entry._1)).saveAsTextFile("/spark/output")
scala> :q
查看HDFS集群中的输出结果:
hdfs集群中的输出结果:
[hadoop@slave01 ~]$ hdfs dfs -ls /spark/
Found 2 items
drwxr-xr-x - hadoop supergroup 0 2018-01-05 15:14 /spark/input
drwxr-xr-x - hadoop supergroup 0 2018-01-08 10:53 /spark/output
[hadoop@slave01 ~]$ hdfs dfs -ls /spark/output
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2018-01-08 10:53 /spark/output/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 88 2018-01-08 10:53 /spark/output/part-00000
[hadoop@slave01 ~]$ hdfs dfs -cat /spark/output/part-00000
(is,4)
(my,4)
(118,1)
(1.67,1)
(35,1)
(ligang,1)
(weight,1)
(name,1)
(height,1)
(age,1)
hdfs集群中的输出结果:
2)、使用spark-submit
[hadoop@CloudDeskTop bin]$ ./spark-submit --class org.apache.spark.examples.JavaSparkPi --master spark://master01:7077,master02:7077 ../examples/jars/spark-examples_2.11-2.1.1.jar 1
Pi的计算结果:
[hadoop@CloudDeskTop bin]$ ./spark-submit --class org.apache.spark.examples.JavaSparkPi --master spark://master01:7077,master02:7077 ../examples/jars/spark-examples_2.11-2.1.1.jar 1 18/01/08 10:55:13 INFO spark.SparkContext: Running Spark version 2.1.1 18/01/08 10:55:13 WARN spark.SparkContext: Support for Java 7 is deprecated as of Spark 2.0.0 18/01/08 10:55:14 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 18/01/08 10:55:14 INFO spark.SecurityManager: Changing view acls to: hadoop 18/01/08 10:55:14 INFO spark.SecurityManager: Changing modify acls to: hadoop 18/01/08 10:55:14 INFO spark.SecurityManager: Changing view acls groups to: 18/01/08 10:55:14 INFO spark.SecurityManager: Changing modify acls groups to: 18/01/08 10:55:14 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(hadoop); groups with view permissions: Set(); users with modify permissions: Set(hadoop); groups with modify permissions: Set() 18/01/08 10:55:15 INFO util.Utils: Successfully started service 'sparkDriver' on port 51109. 18/01/08 10:55:15 INFO spark.SparkEnv: Registering MapOutputTracker 18/01/08 10:55:15 INFO spark.SparkEnv: Registering BlockManagerMaster 18/01/08 10:55:15 INFO storage.BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information 18/01/08 10:55:15 INFO storage.BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up 18/01/08 10:55:15 INFO storage.DiskBlockManager: Created local directory at /tmp/blockmgr-42661d7c-9089-4f97-9dea-661f59f366df 18/01/08 10:55:15 INFO memory.MemoryStore: MemoryStore started with capacity 366.3 MB 18/01/08 10:55:15 INFO spark.SparkEnv: Registering OutputCommitCoordinator 18/01/08 10:55:16 INFO util.log: Logging initialized @4168ms 18/01/08 10:55:16 INFO server.Server: jetty-9.2.z-SNAPSHOT 18/01/08 10:55:16 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@131e6b9c{/jobs,null,AVAILABLE,@Spark} ............................................ 18/01/08 10:55:16 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@106fc08f{/stages/stage/kill,null,AVAILABLE,@Spark} 18/01/08 10:55:16 INFO server.ServerConnector: Started Spark@297cce3b{HTTP/1.1}{0.0.0.0:4040} 18/01/08 10:55:16 INFO server.Server: Started @4619ms 18/01/08 10:55:16 INFO util.Utils: Successfully started service 'SparkUI' on port 4040. 18/01/08 10:55:16 INFO ui.SparkUI: Bound SparkUI to 0.0.0.0, and started at http://192.168.154.134:4040 18/01/08 10:55:16 INFO spark.SparkContext: Added JAR file:/software/spark-2.1.1/bin/../examples/jars/spark-examples_2.11-2.1.1.jar at spark://192.168.154.134:51109/jars/spark-examples_2.11-2.1.1.jar with timestamp 1515380116738 18/01/08 10:55:16 INFO client.StandaloneAppClient$ClientEndpoint: Connecting to master spark://master01:7077... 18/01/08 10:55:16 INFO client.StandaloneAppClient$ClientEndpoint: Connecting to master spark://master02:7077... 18/01/08 10:55:17 INFO client.TransportClientFactory: Successfully created connection to master01/192.168.154.130:7077 after 70 ms (0 ms spent in bootstraps) 18/01/08 10:55:17 INFO client.TransportClientFactory: Successfully created connection to master02/192.168.154.140:7077 after 77 ms (0 ms spent in bootstraps) 18/01/08 10:55:17 INFO cluster.StandaloneSchedulerBackend: Connected to Spark cluster with app ID app-20180108105518-0001 18/01/08 10:55:17 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180108105518-0001/0 on worker-20180108093501-192.168.154.131-55066 (192.168.154.131:55066) with 4 cores 18/01/08 10:55:17 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180108105518-0001/0 on hostPort 192.168.154.131:55066 with 4 cores, 1024.0 MB RAM 18/01/08 10:55:17 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180108105518-0001/1 on worker-20180108093502-192.168.154.132-38226 (192.168.154.132:38226) with 4 cores 18/01/08 10:55:17 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180108105518-0001/1 on hostPort 192.168.154.132:38226 with 4 cores, 1024.0 MB RAM 18/01/08 10:55:17 INFO client.StandaloneAppClient$ClientEndpoint: Executor added: app-20180108105518-0001/2 on worker-20180504093452-192.168.154.133-37578 (192.168.154.133:37578) with 4 cores 18/01/08 10:55:17 INFO cluster.StandaloneSchedulerBackend: Granted executor ID app-20180108105518-0001/2 on hostPort 192.168.154.133:37578 with 4 cores, 1024.0 MB RAM 18/01/08 10:55:17 INFO util.Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 53551. 18/01/08 10:55:17 INFO netty.NettyBlockTransferService: Server created on 192.168.154.134:53551 18/01/08 10:55:17 INFO storage.BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy 18/01/08 10:55:17 INFO storage.BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 192.168.154.134, 53551, None) 18/01/08 10:55:17 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180108105518-0001/1 is now RUNNING 18/01/08 10:55:17 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180108105518-0001/2 is now RUNNING 18/01/08 10:55:17 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.134:53551 with 366.3 MB RAM, BlockManagerId(driver, 192.168.154.134, 53551, None) 18/01/08 10:55:17 INFO storage.BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.154.134, 53551, None) 18/01/08 10:55:17 INFO storage.BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.154.134, 53551, None) 18/01/08 10:55:18 INFO client.StandaloneAppClient$ClientEndpoint: Executor updated: app-20180108105518-0001/0 is now RUNNING 18/01/08 10:55:18 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@280bc0db{/metrics/json,null,AVAILABLE,@Spark} 18/01/08 10:55:23 INFO scheduler.EventLoggingListener: Logging events to hdfs://ns1/sparkLog/app-20180108105518-0001 18/01/08 10:55:23 INFO cluster.StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0 18/01/08 10:55:23 INFO internal.SharedState: Warehouse path is 'file:/software/spark-2.1.1/bin/spark-warehouse/'. 18/01/08 10:55:23 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@77b3e297{/SQL,null,AVAILABLE,@Spark} 18/01/08 10:55:23 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@5ba75a57{/SQL/json,null,AVAILABLE,@Spark} 18/01/08 10:55:23 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@440b92a3{/SQL/execution,null,AVAILABLE,@Spark} 18/01/08 10:55:23 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@7b534e75{/SQL/execution/json,null,AVAILABLE,@Spark} 18/01/08 10:55:23 INFO handler.ContextHandler: Started o.s.j.s.ServletContextHandler@fe55b47{/static/sql,null,AVAILABLE,@Spark} 18/01/08 10:55:25 INFO spark.SparkContext: Starting job: reduce at JavaSparkPi.java:52 18/01/08 10:55:26 INFO scheduler.DAGScheduler: Got job 0 (reduce at JavaSparkPi.java:52) with 1 output partitions 18/01/08 10:55:26 INFO scheduler.DAGScheduler: Final stage: ResultStage 0 (reduce at JavaSparkPi.java:52) 18/01/08 10:55:26 INFO scheduler.DAGScheduler: Parents of final stage: List() 18/01/08 10:55:26 INFO scheduler.DAGScheduler: Missing parents: List() 18/01/08 10:55:26 INFO scheduler.DAGScheduler: Submitting ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:52), which has no missing parents 18/01/08 10:55:26 INFO memory.MemoryStore: Block broadcast_0 stored as values in memory (estimated size 2.3 KB, free 366.3 MB) 18/01/08 10:55:27 INFO memory.MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 1405.0 B, free 366.3 MB) 18/01/08 10:55:27 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.154.134:53551 (size: 1405.0 B, free: 366.3 MB) 18/01/08 10:55:27 INFO spark.SparkContext: Created broadcast 0 from broadcast at DAGScheduler.scala:996 18/01/08 10:55:27 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 0 (MapPartitionsRDD[1] at map at JavaSparkPi.java:52) 18/01/08 10:55:27 INFO scheduler.TaskSchedulerImpl: Adding task set 0.0 with 1 tasks 18/01/08 10:55:39 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.131:53880) with ID 0 18/01/08 10:55:40 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.131:40573 with 366.3 MB RAM, BlockManagerId(0, 192.168.154.131, 40573, None) 18/01/08 10:55:41 WARN scheduler.TaskSetManager: Stage 0 contains a task of very large size (982 KB). The maximum recommended task size is 100 KB. 18/01/08 10:55:41 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, 192.168.154.131, executor 0, partition 0, PROCESS_LOCAL, 1006028 bytes) 18/01/08 10:55:41 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.132:39480) with ID 1 18/01/08 10:55:41 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Registered executor NettyRpcEndpointRef(null) (192.168.154.133:54919) with ID 2 18/01/08 10:55:43 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.132:46053 with 366.3 MB RAM, BlockManagerId(1, 192.168.154.132, 46053, None) 18/01/08 10:55:43 INFO storage.BlockManagerMasterEndpoint: Registering block manager 192.168.154.133:52023 with 366.3 MB RAM, BlockManagerId(2, 192.168.154.133, 52023, None) 18/01/08 10:55:48 INFO storage.BlockManagerInfo: Added broadcast_0_piece0 in memory on 192.168.154.131:40573 (size: 1405.0 B, free: 366.3 MB) 18/01/08 10:55:48 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 8946 ms on 192.168.154.131 (executor 0) (1/1) 18/01/08 10:55:48 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 18/01/08 10:55:48 INFO scheduler.DAGScheduler: ResultStage 0 (reduce at JavaSparkPi.java:52) finished in 21.481 s 18/01/08 10:55:48 INFO scheduler.DAGScheduler: Job 0 finished: reduce at JavaSparkPi.java:52, took 22.791278 s Pi is roughly 3.13876 18/01/08 10:55:48 INFO server.ServerConnector: Stopped Spark@297cce3b{HTTP/1.1}{0.0.0.0:4040} 18/01/08 10:55:48 INFO handler.ContextHandler: Stopped ............................................. o.s.j.s.ServletContextHandler@131e6b9c{/jobs,null,UNAVAILABLE,@Spark} 18/01/08 10:55:48 INFO ui.SparkUI: Stopped Spark web UI at http://192.168.154.134:4040 18/01/08 10:55:49 INFO cluster.StandaloneSchedulerBackend: Shutting down all executors 18/01/08 10:55:49 INFO cluster.CoarseGrainedSchedulerBackend$DriverEndpoint: Asking each executor to shut down 18/01/08 10:55:49 INFO spark.MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped! 18/01/08 10:55:49 INFO memory.MemoryStore: MemoryStore cleared 18/01/08 10:55:49 INFO storage.BlockManager: BlockManager stopped 18/01/08 10:55:49 INFO storage.BlockManagerMaster: BlockManagerMaster stopped 18/01/08 10:55:49 INFO scheduler.OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped! 18/01/08 10:55:49 INFO spark.SparkContext: Successfully stopped SparkContext 18/01/08 10:55:49 INFO util.ShutdownHookManager: Shutdown hook called 18/01/08 10:55:49 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-504e3164-fcd6-4eac-8ae5-fc6744b0298f
3)、测试Spark的高可用是否可以做到Job的运行时高可用
在运行Job的过程中将主Master进程宕掉,观察Spark在高可用集群下是否可以正常跑完Job;
经过实践测试得出结论:Spark的高可用比Yarn的高可用更智能化,可以做到Job的运行时高可用,这与HDFS的高可用能力是相同的;Spark之所以可以做到运行时高可用应该是因为在Job的运行时其Worker节点对Master节点的依赖不及Yarn集群下NM节点对RM节点的依赖那么多。
4)、停止集群
[hadoop@master01 install]$ sh stop-total.sh
注意:
1、如果需要在Spark的高可用配置下仅开启其中一个Master节点,你只需要直接将另一个节点关掉即可,不需要修改任何配置,以后需要多节点高可用时直接启动那些节点上的Master进程即可,ZK会在这些节点启动Master进程时自动感知并将其加入高可用集群组中去,同时为他们分配相应的高可用角色;
2、如果在Spark的高可用配置下仅开启其中一个Master节点,则该唯一节点必须是Alive角色,提交Job时spark-submit的--master参数应该只写Alive角色的唯一Master节点即可,如果你还是把那些没有启动Master进程的节点加入到--master参数列表中去则会引发IOException,但是整个Job仍然会运行成功,因为毕竟运行Job需要的仅仅是Alive角色的Master节点。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。