赞
踩
下载torch、torchvision参考PyTorch 官方安装命令合集
我用的版本是
torch-1.10.0-cp37-cp37m-linux_aarch64.whl
torchvision-0.11.0-cp37-cp37m-linux_aarch64.whl
下载:Deepstream-yolo
下载:ultralytics
把DeepStream-Yolo/utils/ export_yoloV8.py
复制到ultralytics
根目录
cp DeepStream-Yolo/utils/gen_wts_yoloV8.py ultralytics
.pt
转换模型转换为.onnx
模型python export_yoloV8.py -w drone_yolov8m_best.pt --opset=12
执行上面的脚本得到 labels.txt
、 drone_yolov8m_best.onnx
--opset=12
解决python export_yoloV8.py -w drone_yolov8m_best.pt
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
config_infer_primary_yoloV8
config_infer_primary_yoloV8.txt
相关配置library
[property] gpu-id=0 net-scale-factor=0.0039215697906911373 model-color-format=0 onnx-file=drone_yolov8m_best.onnx model-engine-file=drone_yolov8m.onnx_b1_gpu0_fp32.engine #int8-calib-file=calib.table labelfile-path=labels_drone.txt batch-size=1 network-mode=0 num-detected-classes=1 interval=0 gie-unique-id=1 process-mode=1 network-type=0 cluster-mode=2 maintain-aspect-ratio=1 symmetric-padding=1 parse-bbox-func-name=NvDsInferParseYolo custom-lib-path=nvdsinfer_custom_impl_Yolo/libnvdsinfer_custom_impl_Yolo.so [class-attrs-all] nms-iou-threshold=0.45 pre-cluster-threshold=0.25 topk=300
deepstream-app -c deepstream_app_config_yolov8_drone.txt
参考:Deploy YOLOv8 on NVIDIA Jetson using TensorRT and DeepStream SDK
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。