当前位置:   article > 正文

Pandas数据排序,人人都能学会的几种方法

pandas 排序

来源:Python数据之道 (ID:PyDataLab)

作者:阳哥

大家好,我是阳哥。

Pandas 可以说是 在Python数据科学领域应用最为广泛的工具之一。

Pandas是一种高效的数据处理库,它以 dataframeseries 为基本数据类型,呈现出类似excel的二维数据。

在数据处理过程中,咱们经常需要将数据按照一定的要求进行排序,以方便展示。

这里,阳哥来给大家分享下 在 Pandas 中排序的几种常用方法,主要包括 sort_index  和 sort_values

01 按索引排序

数据准备

文中主要使用了 pandasnumpy ,首先导入 Python 库,如下:

  1. import pandas as pd
  2. import numpy as np
  3. print(f'pandas version: {pd.__version__}'
  4. # pandas version 1.3.2

本次使用的数据如下:

  1. data = {
  2.     'brand':['Python数据之道','价值前瞻','菜鸟数据之道','Python','Java'],
  3.     'B':[4,6,8,12,10],
  4.     'A':[10,2,5,20,16],
  5.     'D':[6,18,14,6,12],
  6.     'years':[4,1,1,30,30],
  7.     'C':[8,12,18,8,2],
  8. }
  9. index = [9,3,4,5,2]
  10. df = pd.DataFrame(data=data,index=index)
  11. df

按行索引排序

sort_index() 是 pandas 中按索引排序的函数,默认情况下, sort_index 是按行索引来排序。

通过设置参数 ascending 可以设置升序或降序排列,默认情况下是 ascending=True ,为升序排列。

设置 ascending=False 时,为降序排列,如下:

按列的名称排序

通过设置参数 axis=1 可实现按列的名称排序,如下:

同样的,可以设置 参数 ascending 的值,如下:

关于按列的名称排序,更多的方法,可以参考下面的内容:

02 按数值排序

sort_values() 是 pandas 中按数值排序的函数。

按单个列的值排序

sort_values() 中设置单个列的列名称,可以对单个列进行排序,通过设置参数 ascending 可以设置升序或降序排列,如下:

按多个列的值排序

同时,sort_values() 可以对多个列进行不同的排序,通过设置列明和排序方式组合来实现,如下:

设置参数 ascendingyears 列为升序,B 列为降序,如下:

选择排序算法

选择排序算法,参数 kind 默认是 'quicksort',其他算法有 mergesort, heapsort, stable。

该参数只针对单个列时才有效。

在 numpy 的 sort文档中,对几种排序的特点进行了描述,主要是程序运行时占用的资源和运行速度有差异。

numpy 文档地址:

https://numpy.org/doc/stable/reference/generated/numpy.sort.html#numpy.sort

示例如下:

忽略索引

在排序过程中,还可以引入 ignore_index 参数,来对行索引重新设置,如下:

inplace

inplace 是 pandas 中常见的一个参数。

inplace = True:不创建新的对象,直接对原始对象进行修改;默认是 False,即创建新的对象进行修改,原对象不变,和深复制和浅复制有些类似。

缺失值

先构造一个含缺失值的 dataframe,如下:

  1. data = {
  2.     'brand':['Python数据之道','价值前瞻','菜鸟数据之道','Python','Java'],
  3.     'B':[4,6,8,np.nan,12],
  4.     'A':['Lemon','emma','ZW','app','John'],
  5.     'D':[6,18,14,6,12],
  6.     'years':[4,1,1,30,30],
  7.     'C':[8,12,18,8,2],
  8. }
  9. index = [9,3,4,5,2]
  10. df1 = pd.DataFrame(data=data,index=index)
  11. df1

缺失值排在最前面:

缺失值排在最后面:

key 参数

通过设置 key 参数,可以将列按照特定条件进行排序,对比下下面的排序:

  1. ◆ ◆ ◆  ◆ ◆
  2. 麟哥新书已经在当当上架了,我写了本书:《拿下Offer-数据分析师求职面试指南》,目前当当正在举行活动,大家可以用相当于原价5折的预购价格购买,还是非常划算的:
  1. 数据森麟公众号的交流群已经建立,许多小伙伴已经加入其中,感谢大家的支持。大家可以在群里交流关于数据分析&数据挖掘的相关内容,还没有加入的小伙伴可以扫描下方管理员二维码,进群前一定要关注公众号奥,关注后让管理员帮忙拉进群,期待大家的加入。
  2. 管理员二维码:
  3. 猜你喜欢
  4. ● 卧槽!原来爬取B站弹幕这么简单● 厉害了!麟哥新书登顶京东销量排行榜!● 笑死人不偿命的知乎沙雕问题排行榜
  5. ● 用Python扒出B站那些“惊为天人”的阿婆主!● 你相信逛B站也能学编程吗
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/菜鸟追梦旅行/article/detail/162020
推荐阅读
相关标签
  

闽ICP备14008679号