赞
踩
来源:DeepHub IMBA
大家经常会遇到一些需要预测的场景,比如预测品牌销售额,预测产品销量。
今天给大家分享一波使用 LSTM 进行端到端时间序列预测的完整代码和详细解释。
我们先来了解两个主题:
什么是时间序列分析?
什么是 LSTM?
时间序列分析:时间序列表示基于时间顺序的一系列数据。它可以是秒、分钟、小时、天、周、月、年。未来的数据将取决于它以前的值。
在现实世界的案例中,我们主要有两种类型的时间序列分析:
单变量时间序列
多元时间序列
对于单变量时间序列数据,我们将使用单列进行预测。
正如我们所见,只有一列,因此即将到来的未来值将仅取决于它之前的值。
但是在多元时间序列数据的情况下,将有不同类型的特征值并且目标数据将依赖于这些特征。
正如在图片中看到的,在多元变量中将有多个列来对目标值进行预测。(上图中“count”为目标值)
在上面的数据中,count不仅取决于它以前的值,还取决于其他特征。因此,要预测即将到来的count值,我们必须考虑包括目标列在内的所有列来对目标值进行预测。
在执行多元时间序列分析时必须记住一件事,我们需要使用多个特征预测当前的目标,让我们通过一个例子来理解:
在训练时,如果我们使用 5 列 [feature1, feature2, feature3, feature4, target] 来训练模型,我们需要为即将到来的预测日提供 4 列 [feature1, feature2, feature3, feature4]。
LSTM
本文中不打算详细讨论LSTM。所以只提供一些简单的描述,如果你对LSTM没有太多的了解,可以参考我们以前发布的文章。
LSTM基本上是一个循环神经网络,能够处理长期依赖关系。
假设你在看一部电影。所以当电影中发生任何情况时,你都已经知道之前发生了什么,并且可以理解因为过去发生的事情所以才会有新的情况发生。RNN也是以同样的方式工作,它们记住过去的信息并使用它来处理当前的输入。RNN的问题是,由于渐变消失,它们不能记住长期依赖关系。因此为了避免长期依赖问题设计了lstm。
现在我们讨论了时间序列预测和LSTM理论部分。让我们开始编码。
让我们首先导入进行预测所需的库:
- import numpy as np
- import pandas as pd
- from matplotlib import pyplot as plt
- from tensorflow.keras.models import Sequential
- from tensorflow.keras.layers import LSTM
- from tensorflow.keras.layers import Dense, Dropout
- from sklearn.preprocessing import MinMaxScaler
- from keras.wrappers.scikit_learn import KerasRegressor
- from sklearn.model_selection import GridSearchCV
加载数据,并检查输出:
- df=pd.read_csv("train.csv",parse_dates=["Date"],index_col=[0])
- df.head()
df.tail()
现在让我们花点时间看看数据:csv文件中包含了谷歌从2001-01-25到2021-09-29的股票数据,数据是按照天数频率的。
[如果您愿意,您可以将频率转换为“B”[工作日]或“D”,因为我们不会使用日期,我只是保持它的现状。]
这里我们试图预测“Open”列的未来值,因此“Open”是这里的目标列。
让我们看一下数据的形状:
- df.shape
- (5203,5)
现在让我们进行训练测试拆分。这里我们不能打乱数据,因为在时间序列中必须是顺序的。
- test_split=round(len(df)*0.20)
- df_for_training=df[:-1041]
- df_for_testing=df[-1041:]
- print(df_for_training.shape)
- print(df_for_testing.shape)
-
-
- (4162, 5)
- (1041, 5)
可以注意到数据范围非常大,并且它们没有在相同的范围内缩放,因此为了避免预测错误,让我们先使用MinMaxScaler缩放数据。(也可以使用StandardScaler)
- scaler = MinMaxScaler(feature_range=(0,1))
- df_for_training_scaled = scaler.fit_transform(df_for_training)
- df_for_testing_scaled=scaler.transform(df_for_testing)
- df_for_training_scaled
将数据拆分为X和Y,这是最重要的部分,正确阅读每一个步骤。
- def createXY(dataset,n_past):
- dataX = []
- dataY = []
- for i in range(n_past, len(dataset)):
- dataX.append(dataset[i - n_past:i, 0:dataset.shape[1]])
- dataY.append(dataset[i,0])
- return np.array(dataX),np.array(dataY)
-
-
- trainX,trainY=createXY(df_for_training_scaled,30)
- testX,testY=createXY(df_for_testing_scaled,30)
让我们看看上面的代码中做了什么:
N_past是我们在预测下一个目标值时将在过去查看的步骤数。
这里使用30,意味着将使用过去的30个值(包括目标列在内的所有特性)来预测第31个目标值。
因此,在trainX中我们会有所有的特征值,而在trainY中我们只有目标值。
让我们分解for循环的每一部分:
对于训练,dataset = df_for_training_scaled, n_past=30
当i= 30:
data_X.addend (df_for_training_scaled[i - n_past:i, 0:df_for_training.shape[1]])
从n_past开始的范围是30,所以第一次数据范围将是-[30 - 30,30,0:5] 相当于 [0:30,0:5]
因此在dataX列表中,df_for_training_scaled[0:30,0:5]数组将第一次出现。
现在, dataY.append(df_for_training_scaled[i,0])
i = 30,所以它将只取第30行开始的open(因为在预测中,我们只需要open列,所以列范围仅为0,表示open列)。
第一次在dataY列表中存储df_for_training_scaled[30,0]值。
所以包含5列的前30行存储在dataX中,只有open列的第31行存储在dataY中。然后我们将dataX和dataY列表转换为数组,它们以数组格式在LSTM中进行训练。
我们来看看形状。
- print("trainX Shape-- ",trainX.shape)
- print("trainY Shape-- ",trainY.shape)
-
-
- (4132, 30, 5)
- (4132,)
-
-
- print("testX Shape-- ",testX.shape)
- print("testY Shape-- ",testY.shape)
-
-
- (1011, 30, 5)
- (1011,)
4132 是 trainX 中可用的数组总数,每个数组共有 30 行和 5 列, 在每个数组的 trainY 中,我们都有下一个目标值来训练模型。
让我们看一下包含来自 trainX 的 (30,5) 数据的数组之一 和 trainX 数组的 trainY 值:
- print("trainX[0]-- \n",trainX[0])
- print("trainY[0]-- ",trainY[0])
如果查看 trainX[1] 值,会发现到它与 trainX[0] 中的数据相同(第一列除外),因为我们将看到前 30 个来预测第 31 列,在第一次预测之后它会自动移动 到第 2 列并取下一个 30 值来预测下一个目标值。
让我们用一种简单的格式来解释这一切:
- trainX — — →trainY
-
-
- [0 : 30,0:5] → [30,0]
-
-
- [1:31, 0:5] → [31,0]
-
-
- [2:32,0:5] →[32,0]
像这样,每个数据都将保存在 trainX 和 trainY 中。
现在让我们训练模型,我使用 girdsearchCV 进行一些超参数调整以找到基础模型。
- def build_model(optimizer):
- grid_model = Sequential()
- grid_model.add(LSTM(50,return_sequences=True,input_shape=(30,5)))
- grid_model.add(LSTM(50))
- grid_model.add(Dropout(0.2))
- grid_model.add(Dense(1))
-
-
- grid_model.compile(loss = 'mse',optimizer = optimizer)
- return grid_modelgrid_model = KerasRegressor(build_fn=build_model,verbose=1,validation_data=(testX,testY))
-
-
- parameters = {'batch_size' : [16,20],
- 'epochs' : [8,10],
- 'optimizer' : ['adam','Adadelta'] }
-
-
- grid_search = GridSearchCV(estimator = grid_model,
- param_grid = parameters,
- cv = 2)
如果你想为你的模型做更多的超参数调整,也可以添加更多的层。但是如果数据集非常大建议增加 LSTM 模型中的时期和单位。
在第一个 LSTM 层中看到输入形状为 (30,5)。它来自 trainX 形状。
(trainX.shape[1],trainX.shape[2]) → (30,5)
现在让我们将模型拟合到 trainX 和 trainY 数据中。
grid_search = grid_search.fit(trainX,trainY)
由于进行了超参数搜索,所以这将需要一些时间来运行。
你可以看到损失会像这样减少:
现在让我们检查模型的最佳参数。
- grid_search.best_params_
-
-
- {‘batch_size’: 20, ‘epochs’: 10, ‘optimizer’: ‘adam’}
将最佳模型保存在 my_model 变量中。
my_model=grid_search.best_estimator_.model
现在可以用测试数据集测试模型。
- prediction=my_model.predict(testX)
- print("prediction\n", prediction)
- print("\nPrediction Shape-",prediction.shape)
testY 和 prediction 的长度是一样的。现在可以将 testY 与预测进行比较。
但是我们一开始就对数据进行了缩放,所以首先我们必须做一些逆缩放过程。
scaler.inverse_transform(prediction)
报错了,这是因为在缩放数据时,我们每行有 5 列,现在我们只有 1 列是目标列。
所以我们必须改变形状来使用 inverse_transform:
prediction_copies_array = np.repeat(prediction,5, axis=-1)
5 列值是相似的,它只是将单个预测列复制了 4 次。所以现在我们有 5 列相同的值 。
- prediction_copies_array.shape
- (1011,5)
这样就可以使用 inverse_transform 函数。
pred=scaler.inverse_transform(np.reshape(prediction_copies_array,(len(prediction),5)))[:,0]
但是逆变换后的第一列是我们需要的,所以我们在最后使用了 → [:,0]。
现在将这个 pred 值与 testY 进行比较,但是 testY 也是按比例缩放的,也需要使用与上述相同的代码进行逆变换。
- original_copies_array = np.repeat(testY,5, axis=-1)
- original=scaler.inverse_transform(np.reshape(original_copies_array,(len(testY),5)))[:,0]
现在让我们看一下预测值和原始值:
- print("Pred Values-- " ,pred)
- print("\nOriginal Values-- " ,original)
最后绘制一个图来对比我们的 pred 和原始数据。
- plt.plot(original, color = 'red', label = 'Real Stock Price')
- plt.plot(pred, color = 'blue', label = 'Predicted Stock Price')
- plt.title('Stock Price Prediction')
- plt.xlabel('Time')
- plt.ylabel('Google Stock Price')
- plt.legend()
- plt.show()
看样子还不错,到目前为止,我们训练了模型并用测试值检查了该模型。现在让我们预测一些未来值。
从主 df 数据集中获取我们在开始时加载的最后 30 个值[为什么是 30?因为这是我们想要的过去值的数量,来预测第 31 个值]
- df_30_days_past=df.iloc[-30:,:]
- df_30_days_past.tail()
可以看到有包括目标列(“Open”)在内的所有列。现在让我们预测未来的 30 个值。
在多元时间序列预测中,需要通过使用不同的特征来预测单列,所以在进行预测时我们需要使用特征值(目标列除外)来进行即将到来的预测。
这里我们需要“High”、“Low”、“Close”、“Adj Close”列的即将到来的 30 个值来对“Open”列进行预测。
- df_30_days_future=pd.read_csv("test.csv",parse_dates=["Date"],index_col=[0])
- df_30_days_future
剔除“Open”列后,使用模型进行预测之前还需要做以下的操作:
缩放数据,因为删除了‘Open’列,在缩放它之前,添加一个所有值都为“0”的Open列。
缩放后,将未来数据中的“Open”列值替换为“nan”
现在附加 30 天旧值和 30 天新值(其中最后 30 个“打开”值是 nan)
- df_30_days_future["Open"]=0
- df_30_days_future=df_30_days_future[["Open","High","Low","Close","Adj Close"]]
- old_scaled_array=scaler.transform(df_30_days_past)
- new_scaled_array=scaler.transform(df_30_days_future)
- new_scaled_df=pd.DataFrame(new_scaled_array)
- new_scaled_df.iloc[:,0]=np.nan
- full_df=pd.concat([pd.DataFrame(old_scaled_array),new_scaled_df]).reset_index().drop(["index"],axis=1)
full_df 形状是 (60,5),最后第一列有 30 个 nan 值。
要进行预测必须再次使用 for 循环,我们在拆分 trainX 和 trainY 中的数据时所做的。但是这次我们只有 X,没有 Y 值。
- full_df_scaled_array=full_df.values
- all_data=[]
- time_step=30
- for i in range(time_step,len(full_df_scaled_array)):
- data_x=[]
- data_x.append(
- full_df_scaled_array[i-time_step :i , 0:full_df_scaled_array.shape[1]])
- data_x=np.array(data_x)
- prediction=my_model.predict(data_x)
- all_data.append(prediction)
- full_df.iloc[i,0]=prediction
对于第一个预测,有之前的 30 个值,当 for 循环第一次运行时它会检查前 30 个值并预测第 31 个“Open”数据。
当第二个 for 循环将尝试运行时,它将跳过第一行并尝试获取下 30 个值 [1:31] 。这里会报错错误因为Open列最后一行是 “nan”,所以需要每次都用预测替换“nan”。
最后还需要对预测进行逆变换:
- new_array=np.array(all_data)
- new_array=new_array.reshape(-1,1)
- prediction_copies_array = np.repeat(new_array,5, axis=-1)
- y_pred_future_30_days = scaler.inverse_transform(np.reshape(prediction_copies_array,(len(new_array),5)))[:,0]
- print(y_pred_future_30_days)
这样一个完整的流程就已经跑通了。
- ●分析师如何正确的提建议?
- ●品牌知名度分析
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。