赞
踩
空间自相关是用来测度地利实体的空间分布状况的,具体而言,就是看看它们是有规律的(集聚式或是间隔式),还是随机的(就像在方盘里随意投下一把细针)。这里说的局部自相关,就是可以用来测度以每个地理单元为中心的一小片区域的聚集或离散效应。理论上解释起来,的确有点枯燥。倘若换一个视角,利用我们学习过的经济地理的知识来关联的看,就比较容易些。若将城、镇、村都看作这样的空间单元,那么这种局
部自相关的测度就可以判别出以城市为中心的这片区域内,城市对于农村的经济总量或劳动力是呈离心带动效应还是向心吸引作用,即区域上的发展是均衡式的,还是极化型的。
最常用的局部自相关的测度指数为Local Moran I,它是由全局自相关指数Moran I发展而来的。(关于Moran I的公式与含义,图书馆里有若干本书提到,譬如北大邬伦的那本、黄皮的城市地理信息系统、还有邬建国写的那本景观书:其实质就是在时间序列的自相关系数上,也就是对不同时间的变量数值所做的相关系数上,添加了对空间邻接矩阵的考虑)。所有Local Moran I之和即为Moran I。I的值从1到-1之变化,反映了由空间相邻相似的相关向空间相邻相异的负相关的过渡。
关于理论,就是收住。主要讲讲实现步骤。
ArcGIS9加强了其ArcToolBox的空间统计分析功能,一下子多出了好多的内容。
由ArcGIS Desktop进入,选择toolbox,最后一类菜单功能即为spatial statistics,其中分有诸多子功能。这里要用的Local Moran I,为第二类中的第一项,即mapping cluster里的Cluster and Outlier Analysis (Anselin Local Morans I)。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。