赞
踩
jieba.cut 以及 jieba.cut_for_search 返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode)
jieba.cut
方法接受三个输入参数:
需要分词的字符串
cut_all 参数用来控制是否采用全模式
HMM 参数用来控制是否使用 HMM 模型
jieba.cut_for_search
方法接受两个参数
需要分词的字符串
是否使用 HMM 模型。
该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
import jieba
import logging
jieba.setLogLevel(logging.INFO)
seg = jieba.cut("我在学习自然语言处理", cut_all=True)
seg_list = list(seg)
print("Full Mode: " +"/".join(seg_list))
seg_list = jieba.cut("我在学习自然语言处理", cut_all=False)
print("Default Mode: " + "/ ".join(list(seg_list))) # 精确模式
seg_list = jieba.cut("他毕业于上海交通大学,在百度深度学习研究院进行研究") # 默认是精确模式
print(", ".join(list(seg_list)))
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在哈佛大学深造") # 搜索引擎模式
print(", ".join(list(seg_list)))
很多时候我们需要针对自己的场景进行分词,会有一些领域内的专有词汇。
1.可以用jieba.load_userdict(file_name)加载用户字典
2.少量的词汇可以自己用下面方法手动添加:
用 add_word(word, freq=None, tag=None) 和 del_word(word) 在程序中动态修改词典
用 suggest_freq(segment, tune=True) 可调节单个词语的词频,使其能(或不能)被分出来。
print('/'.join(jieba.cut('如果放到旧字典中将出错。', HMM=False)))
jieba.suggest_freq(('中', '将'), True)
print('/'.join(jieba.cut('如果放到旧字典中将出错。', HMM=False)))
import jieba.analyse
jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
sentence 为待提取的文本
topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
withWeight 为是否一并返回关键词权重值,默认值为 False
allowPOS 仅包括指定词性的词,默认值为空,即不筛选
import jieba.analyse as analyse
lines = open('NBA.txt').read()
print " ".join(analyse.extract_tags(lines, topK=20, withWeight=False, allowPOS=()))
关于TF-IDF 算法的关键词抽取补充
关键词提取所使用逆向文件频率(IDF)文本语料库可以切换成自定义语料库的路径
用法: jieba.analyse.set_idf_path(file_name) # file_name为自定义语料库的路径
自定义语料库示例见这里
用法示例见这里
关键词提取所使用停止词(Stop Words)文本语料库可以切换成自定义语料库的路径
用法: jieba.analyse.set_stop_words(file_name) # file_name为自定义语料库的路径
自定义语料库示例见这里
用法示例见这里
关键词一并返回关键词权重值示例
用法示例见这里
jieba.analyse.textrank(sentence, topK=20, withWeight=False, allowPOS=(‘ns’, ‘n’, ‘vn’, ‘v’)) 直接使用,接口相同,注意默认过滤词性。
jieba.analyse.TextRank() 新建自定义 TextRank 实例
算法论文: TextRank: Bringing Order into Texts
基本思想:
将待抽取关键词的文本进行分词
以固定窗口大小(默认为5,通过span属性调整),词之间的共现关系,构建图
计算图中节点的PageRank,注意是无向带权图
import jieba.analyse as analyse
lines = open('NBA.txt').read()
print " ".join(analyse.textrank(lines, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v')))
print "---------------------我是分割线----------------"
print " ".join(analyse.textrank(lines, topK=20, withWeight=False, allowPOS=('ns', 'n')))
jieba.posseg.POSTokenizer(tokenizer=None) 新建自定义分词器,tokenizer 参数可指定内部使用的 jieba.Tokenizer 分词器。jieba.posseg.dt 为默认词性标注分词器。
标注句子分词后每个词的词性,采用和 ictclas 兼容的标记法。
具体的词性对照表参见计算所汉语词性标记集
import jieba.posseg as pseg
words = pseg.cut("我爱自然语言处理")
for word, flag in words:
print('%s %s' % (word, flag))
原理:将目标文本按行分隔后,把各行文本分配到多个 Python 进程并行分词,然后归并结果,从而获得分词速度的可观提升 基于 python 自带的 multiprocessing 模块,目前暂不支持 Windows
用法:
jieba.enable_parallel(4) # 开启并行分词模式,参数为并行进程数
jieba.disable_parallel() # 关闭并行分词模式
实验结果:在 4 核 3.4GHz Linux 机器上,对金庸全集进行精确分词,获得了 1MB/s 的速度,是单进程版的 3.3 倍。
注意:并行分词仅支持默认分词器 jieba.dt 和 jieba.posseg.dt。
import sys import time import jieba jieba.enable_parallel() content = open(u'西游记.txt',"r").read() t1 = time.time() words = "/ ".join(jieba.cut(content)) t2 = time.time() tm_cost = t2-t1 print('并行分词速度为 %s bytes/second' % (len(content)/tm_cost)) jieba.disable_parallel() content = open(u'西游记.txt',"r").read() t1 = time.time() words = "/ ".join(jieba.cut(content)) t2 = time.time() tm_cost = t2-t1 print('非并行分词速度为 %s bytes/second' % (len(content)/tm_cost))
注意,输入参数只接受 unicode
print "这是默认模式的tokenize"
result = jieba.tokenize(u'自然语言处理非常有用')
for tk in result:
print("%s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
print "\n-----------我是神奇的分割线------------\n"
print "这是搜索模式的tokenize"
result = jieba.tokenize(u'自然语言处理非常有用', mode='search')
for tk in result:
print("%s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
from jieba.analyse import ChineseAnalyzer
# -*- coding: UTF-8 -*- from __future__ import unicode_literals import sys,os sys.path.append("../") from whoosh.index import create_in,open_dir from whoosh.fields import * from whoosh.qparser import QueryParser analyzer = jieba.analyse.ChineseAnalyzer() schema = Schema(title=TEXT(stored=True), path=ID(stored=True), content=TEXT(stored=True, analyzer=analyzer)) if not os.path.exists("tmp"): os.mkdir("tmp") ix = create_in("tmp", schema) # for create new index #ix = open_dir("tmp") # for read only writer = ix.writer() writer.add_document( title="document1", path="/a", content="This is the first document we’ve added!" ) writer.add_document( title="document2", path="/b", content="The second one 你 中文测试中文 is even more interesting! 吃水果" ) writer.add_document( title="document3", path="/c", content="买水果然后来世博园。" ) writer.add_document( title="document4", path="/c", content="工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作" ) writer.add_document( title="document4", path="/c", content="咱俩交换一下吧。" ) writer.commit() searcher = ix.searcher() parser = QueryParser("content", schema=ix.schema) for keyword in ("水果世博园","你","first","中文","交换机","交换"): print(keyword+"的结果为如下:") q = parser.parse(keyword) results = searcher.search(q) for hit in results: print(hit.highlights("content")) print("\n--------------我是神奇的分割线--------------\n") for t in analyzer("我的好朋友是李明;我爱北京天安门;IBM和Microsoft; I have a dream. this is intetesting and interested me a lot"): print(t.text)
使用示例:python -m jieba news.txt > cut_result.txt
命令行选项(翻译):
使用: python -m jieba [options] filename
结巴命令行界面。
固定参数:
filename 输入文件
可选参数:
-h, --help 显示此帮助信息并退出
-d [DELIM], --delimiter [DELIM]
使用 DELIM 分隔词语,而不是用默认的’ / '。
若不指定 DELIM,则使用一个空格分隔。
-p [DELIM], --pos [DELIM]
启用词性标注;如果指定 DELIM,词语和词性之间
用它分隔,否则用 _ 分隔
-D DICT, --dict DICT 使用 DICT 代替默认词典
-u USER_DICT, --user-dict USER_DICT
使用 USER_DICT 作为附加词典,与默认词典或自定义词典配合使用
-a, --cut-all 全模式分词(不支持词性标注)
-n, --no-hmm 不使用隐含马尔可夫模型
-q, --quiet 不输出载入信息到 STDERR
-V, --version 显示版本信息并退出
如果没有指定文件名,则使用标准输入。
–help 选项输出:
$> python -m jieba --help
Jieba command line interface.
positional arguments:
filename input file
optional arguments:
-h, --help show this help message and exit
-d [DELIM], --delimiter [DELIM]
use DELIM instead of ’ / ’ for word delimiter; or a
space if it is used without DELIM
-p [DELIM], --pos [DELIM]
enable POS tagging; if DELIM is specified, use DELIM
instead of ‘_’ for POS delimiter
-D DICT, --dict DICT use DICT as dictionary
-u USER_DICT, --user-dict USER_DICT
use USER_DICT together with the default dictionary or
DICT (if specified)
-a, --cut-all full pattern cutting (ignored with POS tagging)
-n, --no-hmm don’t use the Hidden Markov Model
-q, --quiet don’t print loading messages to stderr
-V, --version show program’s version number and exit
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。