赞
踩
注释写的很详细了,对照着公式比较下更好理解,可以参考一下知乎的文章
import torch import torch.nn as nn import torch.nn.functional as F class SelfAttention(nn.Module): def __init__(self, embed_size): super(SelfAttention, self).__init__() self.embed_size = embed_size # 定义三个全连接层,用于生成查询(Q)、键(K)和值(V) # 用Linear线性层让q、k、y能更好的拟合实际需求 self.value = nn.Linear(embed_size, embed_size) self.key = nn.Linear(embed_size, embed_size) self.query = nn.Linear(embed_size, embed_size) def forward(self, x): # x 的形状应为 (batch_size批次数量, seq_len序列长度, embed_size嵌入维度) batch_size, seq_len, embed_size = x.shape Q = self.query(x) K = self.key(x) V = self.value(x) # 计算注意力分数矩阵 # 使用 Q 矩阵乘以 K 矩阵的转置来得到原始注意力分数 # 注意力分数的形状为 [batch_size, seq_len, seq_len] # K.transpose(1,2)转置后[batch_size, embed_size, seq_len] # 为什么不直接使用 .T 直接转置?直接转置就成了[embed_size, seq_len,batch_size],不方便后续进行矩阵乘法 attention_scores = torch.matmul(Q, K.transpose(1, 2)) / torch.sqrt( torch.tensor(self.embed_size, dtype=torch.float32)) # 应用 softmax 获取归一化的注意力权重,dim=-1表示基于最后一个维度做softmax attention_weight = F.softmax(attention_scores, dim=-1) # 应用注意力权重到 V 矩阵,得到加权和 # 输出的形状为 [batch_size, seq_len, embed_size] output = torch.matmul(attention_weight, V) return output
class MultiHeadAttention(nn.Module): def __init__(self, embed_size, num_heads): super().__init__() self.embed_size = embed_size self.num_heads = num_heads # 整除来确定每个头的维度 self.head_dim = embed_size // num_heads # 加入断言,防止head_dim是小数,必须保证可以整除 assert self.head_dim * num_heads == embed_size self.q = nn.Linear(embed_size, embed_size) self.k = nn.Linear(embed_size, embed_size) self.v = nn.Linear(embed_size, embed_size) self.out = nn.Linear(embed_size, embed_size) def forward(self, query, key, value): # N就是batch_size的数量 N = query.shape[0] # *_len是序列长度 q_len = query.shape[1] k_len = key.shape[1] v_len = value.shape[1] # 通过线性变换让矩阵更好的拟合 queries = self.q(query) keys = self.k(key) values = self.v(value) # 重新构建多头的queries,permute调整tensor的维度顺序 # 结合下文demo进行理解 queries = queries.reshape(N, q_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3) keys = keys.reshape(N, k_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3) values = values.reshape(N, v_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3) # 计算多头注意力分数 attention_scores = torch.matmul(queries, keys.transpose(-2, -1)) / torch.sqrt( torch.tensor(self.head_dim, dtype=torch.float32)) attention = F.softmax(attention_scores, dim=-1) # 整合多头注意力机制的计算结果 out = torch.matmul(attention, values).permute(0, 2, 1, 3).reshape(N, q_len, self.embed_size) # 过一遍线性函数 out = self.out(out) return out
# 测试自注意力机制 batch_size = 2 seq_len = 3 embed_size = 4 # 生成一个随机数据 tensor input_tensor = torch.rand(batch_size, seq_len, embed_size) # 创建自注意力模型实例 model = SelfAttention(embed_size) # print输入数据 print("输入数据 [batch_size, seq_len, embed_size]:") print(input_tensor) # 运行自注意力模型 output_tensor = model(input_tensor) # print输出数据 print("输出数据 [batch_size, seq_len, embed_size]:") print(output_tensor)
=======print=========
输入数据 [batch_size, seq_len, embed_size]: tensor([[[0.7579, 0.7342, 0.1031, 0.8610], [0.8250, 0.0362, 0.8953, 0.1687], [0.8254, 0.8506, 0.9826, 0.0440]], [[0.0700, 0.4503, 0.1597, 0.6681], [0.8587, 0.4884, 0.4604, 0.2724], [0.5490, 0.7795, 0.7391, 0.9113]]]) 输出数据 [batch_size, seq_len, embed_size]: tensor([[[-0.3714, 0.6405, -0.0865, -0.0659], [-0.3748, 0.6389, -0.0861, -0.0706], [-0.3694, 0.6388, -0.0855, -0.0660]], [[-0.2365, 0.4541, -0.1811, -0.0354], [-0.2338, 0.4455, -0.1871, -0.0370], [-0.2332, 0.4458, -0.1867, -0.0363]]], grad_fn=<UnsafeViewBackward0>)
多头注意力机制务必自己debug一下,主要聚焦在理解如何拆分成多头的,不结合代码你很难理解多头的操作过程
1、queries.reshape(N, q_len, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
处理之后的 size = torch.Size([64, 8, 10, 16])
queries
张量的最终形状变为 [N, self.num_heads, q_len, self.head_dim]
。这样的排列方式使得每个注意力头可以单独处理对应的序列部分,而每个头的处理仅关注其分配到的特定维度 self.head_dim
2、attention_scores = torch.matmul(queries, keys.transpose(-2, -1)) / torch.sqrt( torch.tensor(self.head_dim, dtype=torch.float32))
将reshape后的quries
的后两个维度进行转置后点乘,对应了
Q
⋅
K
T
Q \cdot K^T
Q⋅KT ;根据demo这里的头数为8,所以公式中对应的下标
i
i
i 为8
3、在进行完多头注意力机制的计算后通过 torch.matmul(attention, values).permute(0, 2, 1, 3).reshape(N, q_len, self.embed_size)
整合,变回原来的 [batch_size,seq_length,embed_size]
形状
# 测试多头注意力
embed_size = 128 # 嵌入维度
num_heads = 8 # 头数
attention = MultiHeadAttention(embed_size, num_heads)
# 创建随机数据模拟 [batch_size, seq_length, embedding_dim]
batch_size = 64
seq_length = 10
dummy_values = torch.rand(batch_size, seq_length, embed_size)
dummy_keys = torch.rand(batch_size, seq_length, embed_size)
dummy_queries = torch.rand(batch_size, seq_length, embed_size)
# 计算多头注意力输出
output = attention(dummy_values, dummy_keys, dummy_queries)
print(output.shape) # [batch_size, seq_length, embed_size]
=======print=========
torch.Size([64, 10, 128])
如果你难以理解权重矩阵的拼接和拆分,推荐李宏毅的attention课程(YouTobe)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。