赞
踩
Paper地址:https://arxiv.org/abs/2208.07339
GitHub链接:GitHub - TimDettmers/bitsandbytes: 8-bit CUDA functions for PyTorch
随着模型参数规模的增加,大模型(如GPT-3,OPT-175B等NLP稠密大模型)的实际部署应用,需要消耗一定的计算/存储资源,且推理响应延迟存在限制,例如:基于Triton的分布式并行推理,OPT-175B部署在8张A100设备上时,推理延迟约400ms(Batch size=1)。
模型量化是实现模型压缩与推理加速的常用技术手段,但由于大模型本身巨大的参数规模,首先权重矩阵与特征张量的维度都很高,对权重与特征都直接采用Per-tensor量化会造成较大
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。