赞
踩
摘要:人工智能取得成果斐然,但是现阶段的人工智能体还远未达到接近人类心智的水平。在面对复杂环境下,计算体系中的人工智能水平有限,无法发挥其特点。智能是一个复杂系统,在追求算力与算法实现人工智能应用的时代,人在与智能体的合作中的作用不可忽视。机的能力价值(计算)与人的能力价值(算计)协同系统还需研究。本文通过不同角度分析机器的计算逻辑以及人类“算计”的认知能力,探究其能力与不足,并且提出计算-算计模型。为人机混合智能提供一种可行架构。
关键词:人工智能;认知;计算-算计;人机混合智能
一、引言
现如今,人类对人工智能还未下确切的定义,但是一个符合大多数人观点的定义,提到人工智能就是让计算机完成人类心智能做的各种事情。从上世纪40年代图灵的人工智能预言,到上世纪80年代专家系统的开发,再到如今三大主义分支的人工智能应用渗透到人类生活的各个方面[1]。其中,联结主义强调模仿大脑皮质神经网络以及神经网络间的联结机制,即用多隐层的处理结构,处理各种大数据;行为主义以模仿人或生物个体、群体控制行为功能为主,主要表现为具有奖惩控制机制的强化学习方法;符号主义强调以物理符号系统来产生智能行为,主要应用为知识图谱的应用体系。人工智能的应用取得了一定成果,但是其存在不可忽视的缺陷。联结主义下的深度学习算法不可微分,计算收敛性较弱,在开放的动态环境下效果较差,其模型本身是一个“黑盒”[2]。行为主义的强化学习将人的行为过程看的过于简单,实验中只是测量简单的奖惩反馈过程。其次行为主义研究可观察行为,往往忽视心理的内部活动,否定意识的重要性,将意识与行为对立。符号主义及其知识图谱遇到了如何定义“常识”问题以及不确知事物的知识表示与问题求解问题。
要让人工智能接近人类的心智,还需要探索何为智能。大部分对智能的定义有一个共同特点:智能是解决问题的能力,更复杂的问题需要更高水平的智能。相比于加减法,求解微分方程需要更高的智能水平;相比于井字游戏,会下一手好围棋需要更高的智能水平。但是,机器能够求解某种特定问题,并不是意味着机器具有较高的智能水平,哪怕这种问题非常复杂[2]。将目光转向人类的神经网络。神经网络常常简化为感知器,中枢,效应器组成的系统单元,且三个系统每一个都有许多神经元组成,互相之间都有反馈。以目前的神经科学分析手段,该模型是正确的,但是人们往往忽略了外界信息与体内信息的比例。人们常常将该系统简化为输入输出系统,实际上神经系统接收内部信息的感受器是接受外部信息感受器的10万倍[4]。也就是说,神经系统在整体上更像一个自我封闭系统。而且,正式神经网络的封闭性,使得建构主义可以推出客观存在不能离开建构者的哲学理论[5]。机器作为客观存在,解决问题离不开人类。所以说,实现完全脱离人类的通用人工智能系统是不现实的一个课题。本文将在后面章节提出计算-算计模型的人机融合系统。
二、人机融合智能
人工智能虽然在各特定领域的应用越来越广泛,但人们对通用人工智能的呼声愈发明显,不再满足于“弱人工智能”有限的能力。计算机发展到今天,算力已经大幅提升,量子计算机又会将算力提升几个数量级。于是我们转而思考人类智能的本质、来源,试图从认知神经科学等方面找灵感来理解意识,希望赋予人工智能自主意识,但收效甚微。更为实际可行的方案是人机交互融合,充分让人的意识思考即算计与机的逻辑计算有机地结合起来,让机在融合中去学习理解人的算计能力。人机融合智能将开启新的智能时代。
什么是人机融合智能?简单地说,就是着重描述一种由人、机、环境系统相互作用、充分利用人和机器的长处产生的新型智能形式[6]。它既不是人的智能,也不是人工智能。人机融合智能不是简单的人机结合,而是要让机器逐渐理解人的决策,让机器从人的不同条件下的决策来渐渐地理解价值权重的区别。人通过对周围环境的感知加上自己的欲望冲动形成认知,而机器只能对周围环境获取数据、信息,通过特定的数据触发特定的执行过程,将人的认知能力与机的计算能力融合起来,建立新的理解途径,进而做出合目的性合规律性的决策,产生出“人x机”> “人+机”的效果[7]。
如何实现人机有机融合?目前的人机融合智能还处于初级阶段,仍有一些关键问题需要解决,其中最关键的是如何机器的认知能力与机器的计算能力有机地融合[8]。当下处于实际应用阶段的人机系统人和机器的分工明确,主要是机器将数据显示给人,人通过界面操作机器,并没有产生有效的融合。人的思维决策过程是在不断接收外界信息的基础上,通过感知理解、联想想象将外界信息内化为自己的知识或者经验常识
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。