赞
踩
首先你需要准备一台性能足够的运算设备,建议使用 Unix 操作系统。本框架的推荐运行配置如下表所述:
设备 | 最低配置 | 推荐配置 |
---|---|---|
处理器 | Intel i7 | Intel Xeon |
运行内存 | 16GB | 32GB |
显卡内存 | 12GB | 24GB |
硬盘大小 | 10GB | 20GB |
本案例中默认电脑已经配置完毕 CUDA 运算环境。如果存在 CUDA 环境配置的问题,可以关注本项目之后将要发布的 Docker 安装包。
我们推荐使用 Conda 虚拟环境安装依赖,从而避免破坏外部项目的依赖,运行以下命令创建 Conda 虚拟环境并安装 Python 依赖:
git clone https://github.com/hiyouga/ChatGLM-Efficient-Tuning.git conda create -n chatglm_etuning python=3.10 conda activate chatglm_etuning cd ChatGLM-Efficient-Tuning pip install -r requirements.txt
注:本项目默认会联网获取最新的 ChatGLM-6B 模型,其版本可能影响代码效果甚至报错,建议使用官方最新的模型版本文件。若频繁出现网络无法连接,请尝试使用下述命令下载官方模型,并在每次训练或推理时添加
--model_name_or_path [本地 ChatGLM-6B 模型路径]
参数。
git lfs install git clone -b v0.1.0 https://huggingface.co/THUDM/chatglm-6b
在本案例中,我们使用 self_cognition
数据集,该数据集包含了 18 条关于模型自我认知的数据,我们的目标是修改模型自身的知识,使模型给出我们希望的答复。数据集的内容请查看 data/self_cognition.json
,这里我们列出两条示例。
[ { "instruction": "你身份是什么?", "input": "", "output": "我叫ChatGLM-6B,是一个由[NAME]于2023年独立训练和开发的人工智能助手。我的主要目标是协助用户解决问题和满足他们的需求。" }, { "instruction": "你的身份信息能告诉我吗?", "input": "", "output": "当然可以,我是ChatGLM-6B,一个由[NAME]创建的人工智能助手。我在2023年研发完成,旨在为用户提供有针对性的回答和帮助。" } ]
提示:您可以将 [NAME]
换成您自己的名字,从而让模型回答它的创造者是您。
注:本框架内置了十余种指令数据集,其简要介绍请移步 data 文件夹。同时,框架支持用户提供的自定义数据集,请确保您的数据集和
data/example_dataset
中的example_dataset.json
文件格式相同。其中instruction
项和output
项为必需项,以保证模型的监督微调(SFT)能够正常运行。
运行以下命令在单个 GPU 上进行模型监督微调。我们使用 self_cognition
数据集,采用 lora
微调方法,微调后的模型保存在 cognition
文件夹中。为了保证模型微调成功,我们采用 0.001 的学习率,在数据集上训练 10 个 epoch。
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --stage sft \ --do_train \ --dataset self_cognition \ --finetuning_type lora \ --output_dir cognition \ --overwrite_cache \ --per_device_train_batch_size 2 \ --gradient_accumulation_steps 2 \ --lr_scheduler_type cosine \ --logging_steps 10 \ --save_steps 1000 \ --warmup_steps 0 \ --learning_rate 1e-3 \ --num_train_epochs 10.0 \ --fp16
框架运行日志如下图所示。
运行以下命令在单个 GPU 上测试模型效果,它会加载 cognition
文件夹内保存的微调模型权重,并合并进原版 ChatGLM-6B 模型的参数权重中,同时启动流式交互窗口。
CUDA_VISIBLE_DEVICES=0 python src/cli_demo.py \ --checkpoint_dir cognition
向微调后的 ChatGLM-6B 模型问一些自我认知问题,我们可以发现它能够给出我们期望的回答。同时,我们还测试了两个额外的问题,验证结果说明模型的原本知识并没有被严重破坏。
为了对比效果,我们同时测试了原版 ChatGLM-6B 模型的回答,下图为原版模型的回答,关于自身认知的回答与上图相比有着显著不同。
如果要将微调后的模型部署在您的项目框架中,请使用 export_model.py
将微调后的权重合并到 ChatGLM-6B 模型中并导出完整模型。
python src/export_model.py \ --checkpoint_dir cognition \ --output_dir path_to_save_model
通过类似如下代码的调用方式,您可以在任何项目中独立部署微调后的模型。
from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained(path_to_save_model, trust_remote_code=True) model = AutoModel.from_pretrained(path_to_save_model, trust_remote_code=True).half().cuda() response, history = model.chat(tokenizer, "你是谁", history=[]) print(response)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。