当前位置:   article > 正文

2024年Go最新深度解读汽车域控制器_汽车底盘域控芯片(1),2024年最新关于网络优化你必须要知道的重点_车身域控制器的性能优化

车身域控制器的性能优化

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

当前,整个业界对DCU市场都有非常乐观的预期。据佐思产研的预测,2025年全球汽车DCU(座舱+自动驾驶)出货量将超过1400万套,2019-2025期间年平均增长高达50.7%。

图片图2-3 全球域控制器市场预测

整个汽车行业普遍认为,域控制器是汽车电子行业未来竞争门槛最高的部分,因此利润也最高,芯片厂商和核心算法供应商将会受益。

(一) 域控制器市场快速增长背后的驱动因素

更多更好的ADAS功能和智能座舱与信息娱乐功能一直是推动域控制器市场快速增长的主要因素,这些新功能能明显提高整车的科技感和用户体验,因此也是主机厂开发新车型时的投入重点。L1到L2+级别之间的ADAS应用是这几年发展非常快,很多功能都正在快速普及,比如:停车辅助、车道偏离预警、自适应巡航、碰撞避免、盲点侦测、驾驶员疲劳探测等。

域控制器需要一颗性能更强、集成度越高的主控处理器来作为其大脑,更多原本通过分离ECU实现的功能现在可以放到域主控处理器上来实现,也因此就能更加节省功能域里所需的ECU用量和其它硬件资源。更高的集成度可以更主机厂供应链管理实现ADAS域控和相关零部件平台化和标准化的要求。

(二) 对域控制器供应链的影响

汽车E/E架构的演进和发展,也深刻影响了主机厂和汽车电子供应商的供应关系。主机厂的核心竞争力从以前的机械制造为主,全面转向软件和算法为重点。预计未来整车厂与Tier 1供应商之间将可能有两种合作模式:

  • 其一,Tier 1负责域控制器硬件设计和生产,以及中间层Middleware软件部分。整车厂负责自动驾驶软件部分。Tier 1的优势在于以合理的成本将产品生产出来并且加速产品落地,因此整车厂和Tier 1进行合作生产方式是必然,前者负责自动驾驶软件部分,后者负责硬件生产、中间层以及芯片方案整合。这种模式下,在项目立项时,整车厂又可能跨过Tier 1直接与芯片厂商确定方案的芯片选型。
  • 其二,Tier 1自己与芯片商合作,做方案整合后研发中央域控制器并向整车厂销售,例如大陆ADCU、采埃孚ProAI、麦格纳MAX4等。
2.1 智能座舱域控制器

座舱智能化的实质是基于汽车驾驶舱中的人机交互场景,将驾驶信息与娱乐信息两个模块进行集成,为用户提供高效的、直观的、充满未来科技感的驾驶体验。智能座舱的设计诉求主要是用于提升用户的驾乘体验,同时还要保证用户驾乘的安全性和舒适性,最终实现汽车作为人们工作和家庭场景以外的第三生活空间这一终极目标。

智能座舱域包括HUD、仪表盘(Cockpit)和车载娱乐信息系统(In-Vehicle Infotainment,简称IVI)三个最主要的组成部分。

HUD是非常实用的功能,将ADAS和部分导航功能投射到挡风玻璃上,诸如ACC、行人识别、LDW、路线提示、路口转弯提示、变道提示、剩余电量、可行驶里程等。HUD将很快会演变为AR HUD,在L3和L4时代成为标配。

进入L3时代,驾驶员状态监测(Driver Status Monitor,DMS)将成为必备的功能,包括:面部识别、眼球追踪、眨眼次数跟踪等将引入机器视觉和深度学习算法。而L4时代则必备V2X(Vehicle to everything)。

另外,多模态交互技术的蓬勃发展将会极大改变用户与汽车的交互模式。基于语音识别功能的语音交互技术越来越普及,常用于跟IVI系统的交互操作。进一步还能通过语音来对驾驶员进行情绪状态分析。当DMS系统检测到驾驶员昏昏欲睡时,系统可以通过播放音乐或者释放香味来唤醒驾驶员;基于多场景下的汽车座舱多模态交互技术未来一定会重新定义人机交互技术的发展。

所有这些智能座舱新技术的发展,都将推动对座舱域计算资源需求的暴增。

智能座舱域控制器领域,全球Tier 1厂商主要包括:博世、大陆汽车、哈曼、伟世通和Aptiv(安波福)等。中国本土企业主要有德赛西威、航盛和东软睿驰等。

厂商芯片平台座舱域控制器名称操作系统/Hypervisor客户
伟世通高通SmartCoreAndroid,Linux吉利汽车、戴姆勒奔驰、东风、广汽
大陆高通/瑞萨集成式车身电子平台IIPQNX/PikeOS
博世高通AI Car ComputerAGL通用
Aptiv英特尔ICCLinux/ARCN长城、奥迪、沃尔沃
德赛西威高通820A TI Jacinto6智能座舱域控制器理想汽车
东软睿驰英特尔C4-A1fusLinux/ARCN

表2-1 全球主要座舱域控制器厂商信息

2.2 ADAS域控制器

ADAS域控制器通常需要连接多个摄像头、毫米波雷达、激光雷达等传感器设备,要具备多传感器融合、定位、路径规划、决策控制、无线通讯、高速通讯的能力,要完成包含图像识别、传感器数据处理等诸多功能,因此要完成大量运算,域控制器一般都要匹配一个核心运算力强的处理器,能够提供自动驾驶不同级别算力的支持,目前业内有NVIDIA、华为、瑞萨、NXP、TI、Mobileye、赛灵思、地平线等多个方案。

自动驾驶技术目前是全球科技行业最前沿的方向。L1到L2+级别的辅助驾驶技术和功能已经日趋成熟,搭载ADAS功能和应用的很多车型开始进入大规模量产。可以遇见L1/L2级别ADAS功能的市场渗透率将快速提升,而L3/L4级别自动驾驶系统仍处于小规模原型测试阶段。

当今的自动驾驶行业,中国市场绝对是主力。今年中国L2的搭载量预计突破80万,中国品牌占据绝大部分份额。未来中国市场ADAS功能的渗透率还将持续快速提高,中低端汽车所配置的ADAS功能将逐步增多。根据艾瑞咨询研究报告显示,预计2025年ADAS功能在乘用车市场可以达到65%左右的渗透率。L3级别的高速自动领航HWP功能和L4级别的AVP自动泊车功能,目前车型渗透率较低,未来提升空间较大。

图片图2-4 中国ADAS功能市场渗透率预测

ADAS域控制器正在从过去的分布式系统架构演变到域集中式架构。过去一套ADAS系统,要有好几个独立的ECU才能实现,比如车道偏移和交通识别ECU、前向碰撞预警ECU、泊车辅助ECU等。现在有了功能强大的集中式ADAS域控制器后,一个域控制器就实现了所有功能。系统的软硬件复杂度大大降低,可靠性也得到了提高。

目前业内提供ADAS域控芯片平台的有NVIDIA、华为、瑞萨、NXP、TI、Mobileye,以及国内本土的地平线和黑芝麻等多个方案。下表2-2总结了全球主要ADAS域控制器厂商及其客户和伙伴信息。

厂商ADAS域 控制器名称计算芯片平台自动驾驶等级功能安全操作系统客户和量产、SOP计划
伟世通DriveCore支持NVIDIA、高通和NXP的处理器架构L2-L4ASIL-DAutoSAR CP,Auto AP,Linux等广汽,以及欧洲2家主机厂,计划2022年SOP
大陆ADCUNVIDIA DRIVE XavierL3/L4ASIL-DAutoSAR Adaptive平台与NVIDIA合作的L3级别自动驾驶域控制器平台
车载服务器 (ICAS1)NVIDIAL2ASIL-C/D大众MEB平台ID.3系列电动汽车
博世DASy 1.0NVIDIAL2/L2+ASIL-C/DAutoSAR CP,AutoSAR AP已于2019年SOP,支持HWP/TJA等L2+级别的功能
DASy 2.0NVIDIA DRIVE XavierL3/L4ASIL-DAutoSAR AP,Linux2022年SOP
TTTechzFAS/iECUNVIDIA TX2/Xavier///奥迪、上汽
Aptiv中央传感定位和规划(CSLP)平台Intel Mobileye////
Veoneer宙斯Zeus Super ComputerNVIDIA Xavier///
采埃孚中央控制器ProAINVIDIA Xavier///跟百度Apollo合作,客户是奇瑞
麦格纳MAX4////宝马
环宇智行TITANNVIDIA Xavier////
布谷鸟Auto WheelNXP///合作伙伴包括NXP、Renesas、Sony等
知行科技iMo DCU中央控制器TI Jacinto/NXP///众泰
经纬恒润ADAS Domain ControllerNXP////
东软睿驰ADAS DCUXilinx///乘用车和商用车主机厂
德赛西威自动驾驶平台NVIDIA Xavier///小鹏汽车

表2-2 全球主要ADAS域控制器厂商信息

域控制器发展趋势

域控制器的兴起对传统的汽车MCU厂商造成了极大的挑战,“因为MCU使用量将大大减少,传统的MCU产品其演进路线将不复存在”。

在分布式ECU时代,计算和控制的核心是MCU芯片,传输的基础核心是基于传统的CAN、LIN和FlexRay等低速总线。但在域控制器时代,高性能、高集成度的异构SoC芯片作为域的主控处理器,将成为域控制器的计算与控制的核心芯片。而汽车TSN(Time-Sensitive Network)以太网因为具有高带宽、实时和可靠的数据通信能力等特点,必将成为整车通信的核心基础设施,尤其是域主控处理器之间的通信主干网。

下面我们来简单分析一下域控制器以及核心的主控处理器的一些关键技术和趋势。

3.1 高性能

总的来说,对算力的需求提升一直是域控制器核心芯片发展的主要推动力。一方面原本由多个ECU完成的功能,现在需要依靠单一的域主控处理器来完成,并且还需要管理和控制所连接的各种传感器与执行器等。比如:底盘、动力传动系统和车身舒适电子系统的域主控处理器,其算力需求大约在10000DMIPS-15000DMIPS左右。

图片图2-5 汽车域控制器对CPU DMIPS算力的需求预测

新的智能汽车,除了要更多的与人交互外,更需要大量的对环境进行感知,这就需要计算和处理海量的非结构化数据,因此座舱域和自动驾驶域都要求高性能的CPU,比如就座舱仪表的CPU算力而言,它其实跟一部高端智能手机的CPU算力差不多,约为50000DMIPS左右。此外,为了支持L2辅助驾驶功能或者更高级别的自动驾驶功能,需要运行很多视觉DNN模型算法,这就又额外需要上百TOPS的AI算力。

所以,各芯片厂商总是会尽量使用更先进的制程工艺、更先进的CPU核于与NPU核来尽量提高域主控芯片的CPU核心性能与NPU性能。

3.2 高异构性

伴随着AI技术在视觉领域的应用,基于视觉的自动驾驶方案逐渐兴起,这就需要在CPU的基础上加装擅长视觉算法的GPU芯片,从而形成“CPU+GPU”的解决方案。不过,“CPU+GPU”组合也并非最优解决方案,因为 GPU 虽然具备较强的计算能力,但成本高、功耗大,由此又逐步引入了FPGA和 ASIC 芯片。

总体来看,单一类型的微处理器,无论是 CPU、GPU、FPGA还是ASIC,都无法满足更高阶的自动驾驶需求,域控制器中的主控芯片会走向集成“CPU+xPU”的异构式 SoC(xPU 包括 GPU/FPGA/ASIC等),从而能较好的支撑各种场景的硬件加速需求。

3.3 高集成度

从功能层面上,域控制器会整合集成越来越多的功能。比如动力系统域可能把发动机的控制、电机控制、BMS、车载充电机的控制组合在一起。有些主机厂甚至直接一步到位,将底盘、动力传动以及车身三大功能域直接整合成一个“整车控制域(Vehicle Domain Controller,VDC)”。

要支持这些功能的整合,作为域控制器的大脑,域主控处理器SoC就需要集成尽可能多的接口类型,比如:USB、Ethernet、I2C、SPI、CAN、LIN以及FlexRay等等,从而能连接和管理各种各样的ECU、传感器和执行器。

3.4 硬件虚拟化

对硬件虚拟化技术的需要主要来自两方面:(1)硬件资源的分区与隔离;(2)支持混合安全等级。

原本需要多个ECU实现的多个功能都整合到域控制器上后,势必会导致域控制器的软件更为复杂,这势必会导致整个软件系统的出错概率增加、可靠性下降。而且多个应用混合运行在同一个操作系统上,经常会出现故障传播(Failure Propagation),也就是一个应用出现问题后,会使得整个系统底层软件和硬件都处于紊乱状态,从而导致其它原本正常的应用也会开始出现故障。因此通过硬件虚拟化技术对硬件资源进行分区(Partition),使得各个功能对应的软硬件之间互相隔离(Isolation),以此保证整个系统的可靠性。

另一方面,在汽车电子系统中,通常不同的应用其对实时性要求和功能安全等级要求都不同。例如,根据ISO 26262标准,汽车仪表系统与娱乐信息系统属于不同的安全等级,具有不同的处理优先级。汽车仪表系统与动力系统密切相关,要求具有高实时性、高可靠性和强安全性,要求运行在底层实时操作系统上(比如QNX)。而信息娱乐系统主要为车内人机交互提供控制平台,追求多样化的应用与服务,以Linux和Android为主。为了实现混合安全等级的应用,实现不同的操作系统运行在同一个系统上,这就需要虚拟化技术的支持。

车载硬件虚拟化技术的核心是Hypervisor,它是一种运行在物理服务器和操作系统之间的中间层软件,可以允许多个不同虚机上的操作系统和应用共享一套基础物理硬件。当系统启动时,首先运行Hypervisor,由它来负责给每一台虚拟机分配适量的内存、CPU、网络、存储以及其它硬件资源等等(也就是对硬件资源进行分区),最后加载并启动所有虚拟机的客户操作系统。

一句话总结一下基于Hypervisor的优点:它提供了在同一硬件平台上承载异构操作系统的灵活性,同时实现了良好的高可靠性和故障控制机制, 以保证关键任务、硬实时应用程序和一般用途、不受信任的应用程序之间的安全隔离,实现了车载计算单元整合与算力共享。

3.5 ISO 26262功能安全

功能安全是汽车研发流程中非常关键的要素之一。随着系统复杂性的提高,来自系统失效和随机硬件失效的风险日益增加。ISO 26262标准制定的目的就是更好的规范和标准化汽车全生命周期中的功能安全管理和要求,包括:概念阶段、系统研发、硬件研发、软件研发、生产和操作过程、售后等环节,尤其重点在产品设计阶段如何定义和实现功能安全的目标。

载汽车功能安全标准ISO26262-5 2018 “产品开发:硬件层面附录D”中对处理器单元的诊断覆盖率推荐的安全技术措施中,双核锁步(dual-core lockstep)、非对称冗余和编码计算是三种典型的硬件冗余技术措施。除此之外,硬件BIST、软硬件Self-Test技术、ECC等也是常见的提高处理器安全特性的设计措施。

图片图2-6 ISO26262标准中的功能安全芯片设计技术

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!*

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/838107
推荐阅读
相关标签
  

闽ICP备14008679号