当前位置:   article > 正文

波士顿房价预测案例---多元线性回归【机器学习】_多元线性回归:基于线性回归模型的boston房价预测实现。

多元线性回归:基于线性回归模型的boston房价预测实现。

在这里插入图片描述

boston 房价预测

1、介绍

我们采用波士顿房价预测数据集进行回归任务分析。数据集分为训练集和测试集,训练集可用于训练回归模型,测试集需要进行预测。

2、要求

  1. linear regression,或使用现成的线性回归函数,方法尝试使用Gradient DescentSGD 以及 ADAM
  2. 比较不同learning rate的结果。例如损失函数曲线图;
  3. 比较有无加上regularization的结果;
  4. 比较有无否使用 feature scaling的结果。

3、实现方案

code as follows

1、机器学习(LinearRegression
2、深度学习(待开始

3.1、数据未处理

"""
Author:cold
Date:2021-04-01
Version:1.0
Info:baseline
"""
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import pandas as pd
from sklearn.preprocessing import StandardScaler


# 加载数据(455)
dataset =read_csv('train_dataset.csv').values


# 划分训练集和测试集
X = dataset[:,0:13]
Y = dataset[:,13]

x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.3)


# 创建线性回归模型
lr = LinearRegression()
# 拟合训练数据
lr.fit(x_train,y_train)
# 得到预测结果
y_test_pred = lr.predict(x_test)
y_train_pred = lr.predict(x_train)


# 计算相应的评测指标
error_test = mean_squared_error(y_test,y_test_pred)
error_train = mean_squared_error(y_train,y_train_pred)
print("训练集误差为:{},测试集误差为:{}".format(error_train,error_test))


#预测结果
testset =read_csv('test_dataset.csv').values
x_pred = testset[:,1:14]
y_pred = lr.predict(x_pred)
ID = []
for i in range(len(y_pred)):
    ID.append("id_"+str(i+1))
res = pd.DataFrame()
res['ID']=ID
res['value']=y_pred
res.to_csv('res.csv',index=False)
print("res.csv 已生成")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52

3.2、数据标准化处理

"""
Author:cold
Date:2021-04-04
Version:2.0
Info:baselineStd
"""
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import pandas as pd
from sklearn.preprocessing import StandardScaler


# 加载数据(455)
dataset =read_csv('train_dataset.csv').values


# 划分训练集和测试集(+数据标准化)
X = dataset[:,0:13]
Y = dataset[:,13]
stand = StandardScaler()
X_std=stand.fit_transform(X)
x_train,x_test,y_train,y_test = train_test_split(X_std,Y,test_size=0.3)


# 创建线性回归模型
lr = LinearRegression()
# 拟合训练数据
lr.fit(x_train,y_train)
# 得到预测结果
y_test_pred = lr.predict(x_test)
y_train_pred = lr.predict(x_train)


# 计算相应的评测指标
error_test = mean_squared_error(y_test,y_test_pred)
error_train = mean_squared_error(y_train,y_train_pred)
print("训练集误差为:{},测试集误差为:{}".format(error_train,error_test))


#预测结果
testset =read_csv('test_dataset.csv').values
x_pred = testset[:,1:14]
y_pred = lr.predict(x_pred)
ID = []
for i in range(len(y_pred)):
    ID.append("id_"+str(i+1))
res = pd.DataFrame()
res['ID']=ID
res['value']=y_pred
res.to_csv('res.csv',index=False)
print("res.csv 已生成")

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

3.3、数据标准化处理+特征提取

"""
Author:cold
Date:2021-04-04
Version:3.0
Info:baselineSelFeatures
"""
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.feature_selection import SelectKBest,f_regression
from matplotlib import pyplot as plt


#字典结果:{提取k个最佳特征,及索引}
def ToBeStdAndSel(X,Y,k):
    stand = StandardScaler()
    X_std = stand.fit_transform(X)
    best = SelectKBest(f_regression, k=k)
    X_best = best.fit_transform(X_std, Y)#A
    best_index = best.get_support()#B AB顺序不能换
    BEST = {}
    BEST['best_index'] = best_index
    BEST['X_best'] = X_best # 等价于 X_std[:,best_index]
    return BEST

#标准化
def ToBeStd(X):
    stand = StandardScaler()
    X_std = stand.fit_transform(X)
    return X_std

# 保存csv
def ToSaveCsv(y_pred):
    ID = []
    for i in range(len(y_pred)):
        ID.append("id_" + str(i + 1))
    res = pd.DataFrame()
    res['ID'] = ID
    res['value'] = y_pred
    res.to_csv('res.csv', index=False)
    print("res.csv 已生成")

#预测
def TryToPredict(testset):
    x_pred = testset[:, 1:14]
    x_pred_best = ToBeStd(x_pred)[:, best_index]
    y_pred = lr.predict(x_pred_best)
    return y_pred


# 加载数据(455)
dataset =read_csv('train_dataset.csv').values
# 划分训练集和测试集(+数据标准化,+特征提取)X--> X_std--> X_best
X = dataset[:,0:13]
Y = dataset[:,13]
BEST = ToBeStdAndSel(X,Y,6)
X_best = BEST['X_best']
best_index = BEST['best_index']

x_train,x_test,y_train,y_test = train_test_split(X_best,Y,test_size=0.3)

# 创建线性回归模型
lr = LinearRegression()
# 拟合训练数据
lr.fit(x_train,y_train)
# 得到预测结果
y_test_pred = lr.predict(x_test)
y_train_pred = lr.predict(x_train)


# 计算相应的评测指标
error_test = mean_squared_error(y_test,y_test_pred)
error_train = mean_squared_error(y_train,y_train_pred)
print("训练集误差为:{},测试集误差为:{}".format(error_train,error_test))
plt.plot(y_test_pred,'r-',label='predict_value')
plt.plot(y_test,'b-',label='true_value')
plt.legend()
plt.show()

#预测、保存
testset =read_csv('test_dataset.csv').values
y_pred = TryToPredict(testset)
ToSaveCsv(y_pred)

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87

3.4、特征可视化

"""
Author:cold
Date:2021-04-04
Version:1.0
Info: Features show
"""
from pandas import read_csv
import matplotlib.pyplot as plt
import math
# 加载数据(455)
dataset =read_csv('train_dataset.csv').values
X = dataset[:,0:13]
Y = dataset[:,13]
#(特征工程)
features = []
for i in read_csv('train_dataset.csv').keys():
    features.append(i)
nums = len(features)-1
columns =3
rows =math.ceil(nums /columns)
plt.figure(figsize=(12,10))

for i in range(nums):
    plt.subplot(rows,columns,i+1)
    plt.plot(X[:,i],Y,'b+')
    plt.title(features[i])
plt.subplots_adjust(hspace=1.5)
plt.show()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28

4、优化方向

  • 数据特征标准化
  • 特征提取
  • 异常值判断(箱线图)+数据清洗(较之前mean_square_error更低的原因)
  • 更换回归模型
  • 模型融合
  • 尝试深度学习模型
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/842002
推荐阅读
相关标签
  

闽ICP备14008679号