当前位置:   article > 正文

TIME-LLM: TIME SERIES FORECASTING BY REPROGRAMMING LARGE LANGUAGE MODELS

time-llm: time series forecasting by reprogramming large language models

本文是LLM系列文章,针对《TIME-LLM: TIME SERIES FORECASTING BY REPROGRAMMING LARGE LANGUAGE MODELS》的翻译。

time-llm:通过重新编程大型语言模型来预测时间序列

摘要

时间序列预测在许多现实世界的动态系统中具有重要意义,并得到了广泛的研究。与自然语言处理(NLP)和计算机视觉(CV)不同,单个大型模型可以处理多个任务,时间序列预测模型通常是专门的,需要针对不同的任务和应用进行不同的设计。虽然预训练的基础模型在NLP和CV领域取得了令人印象深刻的进步,但它们在时间序列领域的发展受到数据稀疏性的限制。最近的研究表明,大型语言模型(llm)对复杂的符号序列具有强大的模式识别和推理能力。然而,挑战仍然存在,如何有效地将时间序列数据和自然语言的模式结合起来,以利用这些功能。在这项工作中,我们提出了time - llm,这是一个重编程框架,可以在主干语言模型保持完整的情况下,将llm重新用于一般时间序列预测。我们首先用文本原型重新编程输入时间序列,然后将其输入到冻结的LLM中以对齐两种模式。为了增强LLM对时间序列数据进行推理的能力,我们提出了提示作为前缀(PaP),它丰富了输入上下文并指导了重编程输入补丁的转换。最后对LLM变换后的时间序列补丁进行投影,得到预测结果。我们的综合评估表明time - llm是一个强大的时间序列学习器,优于最先进的专业预测模型。此外,TIME-LLM在few-shot和zero-shot学习场景中都表现出色。

1 引言

2 相关工作

3 方法

4 主要结果

5 结论和未来工作<

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/运维做开发/article/detail/943193
推荐阅读
相关标签
  

闽ICP备14008679号