赞
踩
交叉验证(Cross-Validation)是一种用于评估和验证机器学习模型性能的技术,尤其是在数据量有限的情况下。它通过将数据集分成多个子集,反复训练和测试模型,以更稳定和可靠地估计模型的泛化能力。常见的交叉验证方法有以下几种:
K折交叉验证是最常用的交叉验证方法。其步骤如下:
假设数据集分为5折(K=5):
最终,计算5次验证的平均性能指标,作为模型的最终评估结果。
LOOCV是K折交叉验证的特例,其中K等于数据集的样本数量。每次用一个样本作为验证集,剩下的样本作为训练集。
分层交叉验证是K折交叉验证的一种变体,特别适用于类别不平衡的数据集。它确保每个折中的类别分布与原始数据集中的类别分布相同。
随机子集验证将数据集随机分成训练集和验证集,并重复这个过程多次。每次分割可以有不同的训练集和验证集大小比例。
通过合理选择交叉验证方法,可以更准确地评估模型性能,提高模型的泛化能力,并为模型选择和超参数调优提供有力的支持。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。