赞
踩
SM4分组密码算法是一个迭代分组密码算法,由加解密算法和密钥扩展算法组成。SM4分组密码算法采用非平衡Feistel结构,分组长度为128b(16byte)密钥长度为128b(16byte)。加密算法与密钥扩展算法均采用非线性迭代结构。加密运算和解密运算的算法结构相同,解密运算的轮密钥的使用顺序与加密运算相反。
(备注:一次性加密的数据长度为16字节,秘钥也为16字节,算法要求不可变。但可以自行补足字节来做到任意长度字节数据加密,后面C语言实现部分有所体现)
SM4分组密码算法的加密密钥长度为128b,表示为MK=(MK0,MK1,MK2,MK3),其中MKi(i=0,1,2,3)为4bytes。
轮密钥表示为(rk0,rk1,···,rk31),其中rki(i=0,1,···,31)为32b。轮密钥由加密密钥生成。
FK=(FK1,FK2,FK3,FK4)为系统参数,CK=(CK0,CK1,···,CK31)为固定参数,用于密钥扩展算法,其中FKi(i=0,1,···,3),CKi(i=0,1,···,31)均为32b。
SM4加密算法由32次迭代运算和1次反序变换R组成
设明文输入为(X0,X1,X2,X3)∈(Z232)4,密文输出为(Y0,Y1,Y2,Y3)∈(Z232)4,轮密钥为rki∈Z232,i=0,1,···,31。加密算法的运算过程如下。
(1)首先执行32次迭代运算:
Xi+4=F(Xi,Xi+1,Xi+2,Xi+3,rki)=Xi XOR T(Xi XOR Xi+1 XOR Xi+2 XOR Xi+3 XOR rki),i=0,1,···31
(2)对最后一轮数据进行反序变换并得到密文输出:
(Y0,Y1,Y2,Y3)=R(X32,X33,X34,X35)=(X35,X34,X33,X32)。
其中,T:Z232→Z232一个可逆变换,由非线性变换τ和线性变换L复合而成,即T(·)=L(τ(·))。
非线性变换τ由4个并行的S盒构成。设输入为A=(a0,a1,a2,a3)∈(Z28)4,非线性变换τ的输出为B=(b0,b1,b2,b3)∈(Z28)4,即:
(b0,b1,b2,b3)=τ(A)=(Sbox(a0),Sbox(a1),Sbox(a2),Sbox(a3))。
设S盒的输入为EF,则经S盒运算的输出结果结果为第E行、第F列的值,即Sbox(EF)=0x84。
L是线性变换,非线性变换τ的输出是线性变换L的输入。设输入为B∈Z232,则:
C=L(B)=B XOR (B<<<2) XOR (B<<<10) XOR (B<<<18) XOR (B<<<24)。
本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序,解密时使用轮密钥序(rk31,rk30,···,rk0)。
本算法轮密钥由加密密钥通过密钥扩展算法生成。设加密密钥为MK,MK=(MK0,MK1,MK2,MK3)∈(Z232)4。
轮密钥生成方法为rki=Ki XOR T’(Ki+1 XOR Ki+2 XOR Ki+3 XOR CKi),(i=0,1,2,···,31),其中:
K0=MK0 XOR FK0;
K1=MK1 XOR FK1;
K2=MK2 XOR FK2;
K3=MK3 XOR FK3。
(1)T’是将3.2.2节中合成置换T的线性变换L替换为L’:
L’(B)=B XOR (B<<<13) XOR (B<<<23)。
(2)系统参数FK(为定值)的取值为:
FK0=(A3B1BAC6);
FK1=(56AA3350);
FK2=(677D9197);
FK3=(B27022DC)。
(3)固定参数CK(为定值)取值方法为:
设cki,j为CKi的第j字节(i=0,1,···,31;j=0,1,2,3),即CKi=(cki,0,cki,1,cki,2,cki,3)∈(Z28)4,则cki,j=(4i+j)×7(mod 256)。
固定参数CKi(i=0,1,2,···,31)的具体值为:
00070E15,1C232A31,383F464D,545B6269,
70777E85,8C939AA1,A8AFB6BD,C4CBD2D9,
E0E7EEF5,FC030A11,181F262D,343B4249,
50575E65,6C737A81,888F969D,A4ABB2B9,
C0C7CED5,DCE3EAF1,F8FF060D,141B2229,
30373E45,,4C535A61,686F767D,848B9299,
A0A7AEB5,BCC3CAD1,D8DFE6ED,F4FB0209,
10171E25,2C333A41,484F565D,646B7279。
#ifndef _SM4_H_ #define _SM4_H_ #include <stdlib.h> #include <stdio.h> #include <string.h> #define u8 unsigned char #define u32 unsigned long void four_uCh2uLong(u8 *in, u32 *out); //四字节转换成u32 void uLong2four_uCh(u32 in, u8 *out); //u32转换成四字节 unsigned long move(u32 data, int length); //左移,保留丢弃位放置尾部 unsigned long func_key(u32 input); //先使用Sbox进行非线性变化,再将线性变换L置换为L' unsigned long func_data(u32 input); //先使用Sbox进行非线性变化,再进行线性变换L void print_hex(u8 *data, int len); //无符号字符数组转16进制打印 void encode_fun(u8 len,u8 *key, u8 *input, u8 *output); //加密函数 void decode_fun(u8 len,u8 *key, u8 *input, u8 *output); //解密函数 /******************************定义系统参数FK的取值****************************************/ const u32 TBL_SYS_PARAMS[4] = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; /******************************定义固定参数CK的取值****************************************/ const u32 TBL_FIX_PARAMS[32] = { 0x00070e15,0x1c232a31,0x383f464d,0x545b6269, 0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9, 0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249, 0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9, 0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229, 0x30373e45,0x4c535a61,0x686f767d,0x848b9299, 0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209, 0x10171e25,0x2c333a41,0x484f565d,0x646b7279 }; /******************************SBox参数列表****************************************/ const u8 TBL_SBOX[256] = { 0xd6,0x90,0xe9,0xfe,0xcc,0xe1,0x3d,0xb7,0x16,0xb6,0x14,0xc2,0x28,0xfb,0x2c,0x05, 0x2b,0x67,0x9a,0x76,0x2a,0xbe,0x04,0xc3,0xaa,0x44,0x13,0x26,0x49,0x86,0x06,0x99, 0x9c,0x42,0x50,0xf4,0x91,0xef,0x98,0x7a,0x33,0x54,0x0b,0x43,0xed,0xcf,0xac,0x62, 0xe4,0xb3,0x1c,0xa9,0xc9,0x08,0xe8,0x95,0x80,0xdf,0x94,0xfa,0x75,0x8f,0x3f,0xa6, 0x47,0x07,0xa7,0xfc,0xf3,0x73,0x17,0xba,0x83,0x59,0x3c,0x19,0xe6,0x85,0x4f,0xa8, 0x68,0x6b,0x81,0xb2,0x71,0x64,0xda,0x8b,0xf8,0xeb,0x0f,0x4b,0x70,0x56,0x9d,0x35, 0x1e,0x24,0x0e,0x5e,0x63,0x58,0xd1,0xa2,0x25,0x22,0x7c,0x3b,0x01,0x21,0x78,0x87, 0xd4,0x00,0x46,0x57,0x9f,0xd3,0x27,0x52,0x4c,0x36,0x02,0xe7,0xa0,0xc4,0xc8,0x9e, 0xea,0xbf,0x8a,0xd2,0x40,0xc7,0x38,0xb5,0xa3,0xf7,0xf2,0xce,0xf9,0x61,0x15,0xa1, 0xe0,0xae,0x5d,0xa4,0x9b,0x34,0x1a,0x55,0xad,0x93,0x32,0x30,0xf5,0x8c,0xb1,0xe3, 0x1d,0xf6,0xe2,0x2e,0x82,0x66,0xca,0x60,0xc0,0x29,0x23,0xab,0x0d,0x53,0x4e,0x6f, 0xd5,0xdb,0x37,0x45,0xde,0xfd,0x8e,0x2f,0x03,0xff,0x6a,0x72,0x6d,0x6c,0x5b,0x51, 0x8d,0x1b,0xaf,0x92,0xbb,0xdd,0xbc,0x7f,0x11,0xd9,0x5c,0x41,0x1f,0x10,0x5a,0xd8, 0x0a,0xc1,0x31,0x88,0xa5,0xcd,0x7b,0xbd,0x2d,0x74,0xd0,0x12,0xb8,0xe5,0xb4,0xb0, 0x89,0x69,0x97,0x4a,0x0c,0x96,0x77,0x7e,0x65,0xb9,0xf1,0x09,0xc5,0x6e,0xc6,0x84, 0x18,0xf0,0x7d,0xec,0x3a,0xdc,0x4d,0x20,0x79,0xee,0x5f,0x3e,0xd7,0xcb,0x39,0x48 }; #endif
#include "sm4.h" //4字节无符号数组转无符号long型 void four_uCh2uLong(u8 *in, u32 *out) { int i = 0; *out = 0; for (i = 0; i < 4; i++) *out = ((u32)in[i] << (24 - i * 8)) ^ *out; } //无符号long型转4字节无符号数组 void uLong2four_uCh(u32 in, u8 *out) { int i = 0; //从32位unsigned long的高位开始取 for (i = 0; i < 4; i++) *(out + i) = (u32)(in >> (24 - i * 8)); } //左移,保留丢弃位放置尾部 u32 move(u32 data, int length) { u32 result = 0; result = (data << length) ^ (data >> (32 - length)); return result; } //秘钥处理函数,先使用Sbox进行非线性变化,再将线性变换L置换为L' u32 func_key(u32 input) { int i = 0; u32 ulTmp = 0; u8 ucIndexList[4] = { 0 }; u8 ucSboxValueList[4] = { 0 }; uLong2four_uCh(input, ucIndexList); for (i = 0; i < 4; i++) { ucSboxValueList[i] = TBL_SBOX[ucIndexList[i]]; } four_uCh2uLong(ucSboxValueList, &ulTmp); ulTmp = ulTmp ^ move(ulTmp, 13) ^ move(ulTmp, 23); return ulTmp; } //加解密数据处理函数,先使用Sbox进行非线性变化,再进行线性变换L u32 func_data(u32 input) { int i = 0; u32 ulTmp = 0; u8 ucIndexList[4] = { 0 }; u8 ucSboxValueList[4] = { 0 }; uLong2four_uCh(input, ucIndexList); for (i = 0; i < 4; i++) { ucSboxValueList[i] = TBL_SBOX[ucIndexList[i]]; } four_uCh2uLong(ucSboxValueList, &ulTmp); ulTmp = ulTmp ^ move(ulTmp, 2) ^ move(ulTmp, 10) ^ move(ulTmp, 18) ^ move(ulTmp, 24); return ulTmp; } //加密函数(可以加密任意长度数据,16字节为一次循环,不足部分补0凑齐16字节的整数倍) //len:数据长度(任意长度数据) key:密钥(16字节) input:输入的原始数据 output:加密后输出数据 void encode_fun(u8 len,u8 *key, u8 *input, u8 *output) { int i = 0,j=0; u8 *p = (u8 *)malloc(50); //定义一个50字节缓存区 u32 ulKeyTmpList[4] = { 0 }; //存储密钥的u32数据 u32 ulKeyList[36] = { 0 }; //用于密钥扩展算法与系统参数FK运算后的结果存储 u32 ulDataList[36] = { 0 }; //用于存放加密数据 /***************************开始生成子秘钥********************************************/ four_uCh2uLong(key, &(ulKeyTmpList[0])); four_uCh2uLong(key + 4, &(ulKeyTmpList[1])); four_uCh2uLong(key + 8, &(ulKeyTmpList[2])); four_uCh2uLong(key + 12, &(ulKeyTmpList[3])); ulKeyList[0] = ulKeyTmpList[0] ^ TBL_SYS_PARAMS[0]; ulKeyList[1] = ulKeyTmpList[1] ^ TBL_SYS_PARAMS[1]; ulKeyList[2] = ulKeyTmpList[2] ^ TBL_SYS_PARAMS[2]; ulKeyList[3] = ulKeyTmpList[3] ^ TBL_SYS_PARAMS[3]; for (i = 0; i < 32; i++) //32次循环迭代运算 { //5-36为32个子秘钥 ulKeyList[i + 4] = ulKeyList[i] ^ func_key(ulKeyList[i + 1] ^ ulKeyList[i + 2] ^ ulKeyList[i + 3] ^ TBL_FIX_PARAMS[i]); } /***********************************生成32轮32位长子秘钥结束**********************************/ for (i = 0; i < len; i++) //将输入数据存放在p缓存区 *(p + i) = *(input + i); for (i = 0; i < 16-len % 16; i++)//将不足16位补0凑齐16的整数倍 *(p + len + i) = 0; for (j = 0; j < len / 16 + ((len % 16) ? 1:0); j++) //进行循环加密,并将加密后数据保存(可以看出此处是以16字节为一次加密,进行循环,即若16字节则进行一次,17字节补0至32字节后进行加密两次,以此类推) { /*开始处理加密数据*/ four_uCh2uLong(p + 16 * j, &(ulDataList[0])); four_uCh2uLong(p + 16 * j + 4, &(ulDataList[1])); four_uCh2uLong(p + 16 * j + 8, &(ulDataList[2])); four_uCh2uLong(p + 16 * j + 12, &(ulDataList[3])); //加密 for (i = 0; i < 32; i++) { ulDataList[i + 4] = ulDataList[i] ^ func_data(ulDataList[i + 1] ^ ulDataList[i + 2] ^ ulDataList[i + 3] ^ ulKeyList[i + 4]); } /*将加密后数据输出*/ uLong2four_uCh(ulDataList[35], output + 16 * j); uLong2four_uCh(ulDataList[34], output + 16 * j + 4); uLong2four_uCh(ulDataList[33], output + 16 * j + 8); uLong2four_uCh(ulDataList[32], output + 16 * j + 12); } free(p); } //解密函数(与加密函数基本一致,只是秘钥使用的顺序不同,即把钥匙反着用就是解密) //len:数据长度 key:密钥 input:输入的加密后数据 output:输出的解密后数据 void decode_fun(u8 len,u8 *key, u8 *input, u8 *output) { int i = 0,j=0; u32 ulKeyTmpList[4] = { 0 };//存储密钥的u32数据 u32 ulKeyList[36] = { 0 }; //用于密钥扩展算法与系统参数FK运算后的结果存储 u32 ulDataList[36] = { 0 }; //用于存放加密数据 /*开始生成子秘钥*/ four_uCh2uLong(key, &(ulKeyTmpList[0])); four_uCh2uLong(key + 4, &(ulKeyTmpList[1])); four_uCh2uLong(key + 8, &(ulKeyTmpList[2])); four_uCh2uLong(key + 12, &(ulKeyTmpList[3])); ulKeyList[0] = ulKeyTmpList[0] ^ TBL_SYS_PARAMS[0]; ulKeyList[1] = ulKeyTmpList[1] ^ TBL_SYS_PARAMS[1]; ulKeyList[2] = ulKeyTmpList[2] ^ TBL_SYS_PARAMS[2]; ulKeyList[3] = ulKeyTmpList[3] ^ TBL_SYS_PARAMS[3]; for (i = 0; i < 32; i++) //32次循环迭代运算 { //5-36为32个子秘钥 ulKeyList[i + 4] = ulKeyList[i] ^ func_key(ulKeyList[i + 1] ^ ulKeyList[i + 2] ^ ulKeyList[i + 3] ^ TBL_FIX_PARAMS[i]); } /*生成32轮32位长子秘钥结束*/ for (j = 0; j < len / 16; j++) //进行循环加密,并将加密后数据保存 { /*开始处理解密数据*/ four_uCh2uLong(input + 16 * j, &(ulDataList[0])); four_uCh2uLong(input + 16 * j + 4, &(ulDataList[1])); four_uCh2uLong(input + 16 * j + 8, &(ulDataList[2])); four_uCh2uLong(input + 16 * j + 12, &(ulDataList[3])); //解密 for (i = 0; i < 32; i++) { ulDataList[i + 4] = ulDataList[i] ^ func_data(ulDataList[i + 1] ^ ulDataList[i + 2] ^ ulDataList[i + 3] ^ ulKeyList[35 - i]);//与加密唯一不同的就是轮密钥的使用顺序 } /*将解密后数据输出*/ uLong2four_uCh(ulDataList[35], output + 16 * j); uLong2four_uCh(ulDataList[34], output + 16 * j + 4); uLong2four_uCh(ulDataList[33], output + 16 * j + 8); uLong2four_uCh(ulDataList[32], output + 16 * j + 12); } } //无符号字符数组转16进制打印 void print_hex(u8 *data, int len) { int i = 0; char alTmp[16] = { '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f' }; for (i = 0; i < len; i++) { printf("%c", alTmp[data[i] / 16]); printf("%c", alTmp[data[i] % 16]); putchar(' '); } putchar('\n'); } /*在主函数中实现任意字节加密与解密,并且结果正确*/ int main(void) { u8 i,len; u8 encode_Result[50] = { 0 }; //定义加密输出缓存区 u8 decode_Result[50] = { 0 }; //定义解密输出缓存区 u8 key[16] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 }; //定义16字节的密钥 //u8 Data_plain[18] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10,0x01,0x23 };//定义18字节的原始输入数据(测试用) //u8 Data_plain[32] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10,0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef,0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 };//定义32字节的原始输入数据(测试用) u8 Data_plain[16] = { 0x01,0x23,0,0,0,0,0,0,0,0,0,0,0,0,0,0};//定义16字节的原始输入数据(测试用) len = 16 * (sizeof(Data_plain) / 16) + 16 * ((sizeof(Data_plain) % 16) ? 1 : 0);//得到扩充后的字节数(解密函数会用到) encode_fun(sizeof(Data_plain),key, Data_plain, encode_Result); //数据加密 printf("加密后数据是:\n"); for (i = 0; i < len ; i++) printf("%x ", *(encode_Result + i)); /*注意:此处解密函数的输入数据长度应为扩展后的数据长度,即必为16的倍数*/ decode_fun(len,key, encode_Result, decode_Result); //数据解密 printf("解密后数据是:\n"); for (i = 0; i < len; i++) printf("%x ", *(decode_Result + i)); system("pause"); return 0; }
完结撒花!希望看到这里的小伙伴能点个关注,我后续会持续更新更多关于密码学原理分析和实现,也欢迎大家广泛交流。
码字实属不易,如果本文对你有10分帮助,就赏个10分把,感谢各位大佬支持!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。