当前位置:   article > 正文

李沐深度学习-权重衰退简洁实现_李牧深度学习

李牧深度学习
import torch
import torch.nn as nn
import torch.utils.data as Data
import numpy as np
import sys

sys.path.append("路径")
import d2lzh_pytorch as d2l

'''
---------------------------------------------------设计初始化样本数据
'''
batch_size, lr, num_inputs, n_train, n_test = 1, 0.001, 200, 20, 100
# 设计初始化模型参数,为了得到对应标签值y
true_w, true_b = torch.ones((num_inputs, 1)) * 0.01, 0.05
features = torch.randn((n_train + n_test, num_inputs))
train_features, test_features = features[:n_train, :], features[n_train:, :]
labels = torch.matmul(features, true_w) + true_b
labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
train_labels, test_labels = labels[:n_train], labels[n_train:]
'''
---------------------------------------------------导入数据集
'''
dataset = Data.TensorDataset(train_features, train_labels)
train_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
'''
---------------------------------------------------初始化模型及参数
# 这里的net[0]指的是 容器中第一个网络层
'''
net = nn.Sequential(
    nn.Linear(num_inputs, 1)
)
nn.init.normal_(net[0].weight, mean=0, std=0.01)
nn.init.normal_(net[0].bias, mean=0, std=0.01)

'''
--------------------------------------------------定义损失函数
'''
loss = nn.MSELoss()
'''
--------------------------------------------------训练模型
'''
num_epochs = 100


def train(wd, name):
    # net是整个容器的实例化对象,访问对象里面的网络层需要用索引,因为这里只有一个layer,所以用net[0]就是指第一个网络层
    optimizer_w = torch.optim.SGD(params=[net[0].weight], lr=lr, weight_decay=wd)  # 对权重参数衰退
    optimizer_b = torch.optim.SGD(params=[net[0].bias], lr=lr)  # 不对偏差衰退
    train_l, test_l = [], []
    for epochs in range(num_epochs):
        for X, y in train_iter:
            l = loss(net(X), y).mean()
            optimizer_w.zero_grad()
            optimizer_b.zero_grad()
            l.backward()
            optimizer_w.step()
            optimizer_b.step()
        train_l.append(loss(net(train_features), train_labels).mean().item())
        test_l.append(loss(net(test_features), test_labels).mean().item())
    d2l.semilogy(range(1, num_epochs + 1), train_l, 'epoch', 'loss', name,
                 range(1, num_epochs + 1), test_l, ['train', 'test'])
    print(f'L2 norm of w:', net[0].weight.data.norm().item())


'''
------------------------------------------------------'权重衰退不参与'
'''
# train(0, '权重衰退不参与')
'''
--------------------------------------------------------权重衰退参与模拟
'''
train(3, '权重衰退参与模拟')

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:【wpsshop博客】
推荐阅读
相关标签
  

闽ICP备14008679号