当前位置:   article > 正文

改进YOLO系列:改进YOLOv8,教你YOLOv8如何添加20多种注意力机制,并实验不同位置。_yolov8添加注意力机制

yolov8添加注意力机制


在这里插入图片描述

一、注意力机制介绍

注意力机制(Attention Mechanism)是深度学习中一种重要的技术,它可以帮助模型更好地关注输入数据中的关键信息,从而提高模型的性能。注意力机制最早在自然语言处理领域的序列到序列(seq2seq)模型中得到广泛应用,后来逐渐扩展到了计算机视觉、语音识别等多个领域。

注意力机制的基本思想是为输入数据的每个部分分配一个权重,这个权重表示该部分对于当前任务的重要程度。在自然语言处理任务中,这通常意味着对输入句子中的每个单词分配一个权重,而在计算机视觉任务中,这可能意味着为输入图像的每个像素或区域分配一个权重。

二.添加方法

1.GAM注意力

论文原文:https://arxiv.org/pdf/2112.05561v1.pdf

该论文提出了一种全局注意力机制(GAM),可以通过保留空间和通道信息之间的关联来提高模型的性能。GAM能够有效地捕捉不同通道之间的相关性,进而更好地区分不同的目标。
网络结构图:
网络结构图

import torch.nn as nn
import torch
 
class GAM_Attention(nn.Module):
    def __init__(self, in_channels,c2, rate=4):
        super(GAM_Attention, self).__init__()
 
        self.channel_attention = nn.Sequential(
            nn.Linear(in_channels, int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Linear(int(in_channels / rate), in_channels)
        )
 
        self.spatial_attention = nn.Sequential(
            nn.Conv2d(in_channels, int(in_channels / rate), kernel_size=7, padding=3),
            nn.BatchNorm2d(int(in_channels / rate)),
            nn.ReLU(inplace=True),
            nn.Conv2d(int(in_channels / rate), in_channels, kernel_size=7, padding=3),
            nn.BatchNorm2d(in_channels)
        )
 
    def forward(self, x):
        b, c, h, w = x.shape
        x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
        x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
        x_channel_att = x_att_permute.permute(0, 3, 1, 2).sigmoid()
        x = x * x_channel_att
        x_spatial_att = self.spatial_attention(x).sigmoid()
        out = x * x_spatial_att
 
        return out
 
if __name__ == '__main__':
    x = torch.randn(1, 64, 20, 20)
    b, c, h, w = x.shape
    net = GAM_Attention(in_channels=c)
    y = net(x)
    print(y.size())
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38

添加方法1

此方法适用于较早版本的yolov8代码,最新的yolov8代码加入方式看方法2

##将以上代码放到ultralytics/nn/modules.py里在这里插入图片描述

在tasks.py里要加入from yltralytics.nn.modules import *

在ultralytics/nn/tasks.py处引用
在这里插入图片描述
注册以下代码:

# """**************add Attention***************"""
        elif m in {GAM_Attention}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

在这里插入图片描述

2.骨干中添加

新建yaml文件
在这里插入图片描述

添加方法2

1.block代码中加入注意力代码

在这里插入图片描述

2.注册及引用GAM注意力代码

ultralytics/nn/modules/init.py文件中
在这里插入图片描述
ultralytics/nn/tasks.py文件中
在这里插入图片描述

tasks里写入调用方式

        # """**************add Attention***************"""
        elif m in {GAM_Attention}:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if not output
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

示例
在这里插入图片描述

yaml文件

# Ultralytics YOLO 
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/271274
推荐阅读
相关标签