当前位置:   article > 正文

【从零开始实现stm32无刷电机FOC】【实践】【6/7 CMSIS-DSP】

cmsis-dsp

点击查看本文开源的完整FOC工程
CMSIS-DSP库是ARM开源的、对ARM处理器优化的数学库,本文使用了其提供的三角函数、反park变换函数、park变换函数、clarke变换函数、PID控制器。
CMSIS-DSP原始代码仓库是https://github.com/ARM-software/CMSIS-DSP,官方对其的介绍是一个针对Cortex-M和Cortex-A内核优化的嵌入式系统计算库,此处的DSP不是指的硬件,而是数字处理的意思。
在这里插入图片描述

导入CMSIS-DSP库

本文使用stm32cube编译好的CMSIS-DSP二进制文件,首先在Middleware and Software Packs中选择X-CUBE-ALGOBUILD:在这里插入图片描述
选择安装DSP Library,并且勾选Selection,下图为已经安装好的状态:
在这里插入图片描述
勾选DSP Library Library:
在这里插入图片描述
到此,工程代码里就能够使用CMSIS-DSP库了,只需在要使用DSP库的C源文件加上

#include "arm_math.h"
  • 1

使用CMSIS-DSP

三角函数:
单独计算sin和cos三角函数,输入弧度rad:

  float32_t arm_sin_f32(float32_t x);
  float32_t arm_cos_f32(float32_t x);
  • 1
  • 2

单个函数完成计算sin和cos三角函数,输入角度deg:

  /**
   * @brief  Floating-point sin_cos function.
   * @param[in]  theta   input value in degrees
   * @param[out] pSinVal  points to the processed sine output.
   * @param[out] pCosVal  points to the processed cos output.
   */
  void arm_sin_cos_f32(
        float32_t theta,
        float32_t * pSinVal,
        float32_t * pCosVal);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

clarke变换:

  /**
   *
   * @brief  Floating-point Clarke transform
   * @param[in]  Ia       input three-phase coordinate <code>a</code>
   * @param[in]  Ib       input three-phase coordinate <code>b</code>
   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
   * @return        none
   */
  __STATIC_FORCEINLINE void arm_clarke_f32(
  float32_t Ia,
  float32_t Ib,
  float32_t * pIalpha,
  float32_t * pIbeta)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14

clarke变换是将三个相线电流投影到 α \alpha α β \beta β轴,由于三个相线电流相加等于0,因此只需要输入两个相线电流IaIb到clarke变换函数中,输出到pIalphapIbeta

park变换:

  /**
   * @brief Floating-point Park transform
   * @param[in]  Ialpha  input two-phase vector coordinate alpha
   * @param[in]  Ibeta   input two-phase vector coordinate beta
   * @param[out] pId     points to output   rotor reference frame d
   * @param[out] pIq     points to output   rotor reference frame q
   * @param[in]  sinVal  sine value of rotation angle theta
   * @param[in]  cosVal  cosine value of rotation angle theta
   * @return     none
   *
   * The function implements the forward Park transform.
   *
   */
  __STATIC_FORCEINLINE void arm_park_f32(
  float32_t Ialpha,
  float32_t Ibeta,
  float32_t * pId,
  float32_t * pIq,
  float32_t sinVal,
  float32_t cosVal)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

park变换是将 α \alpha α β \beta β轴投影到dq轴,此处的sinValcosVal为转子角度的sin和cos值。

反park变换:

   /**
   * @brief  Floating-point Inverse Park transform
   * @param[in]  Id       input coordinate of rotor reference frame d
   * @param[in]  Iq       input coordinate of rotor reference frame q
   * @param[out] pIalpha  points to output two-phase orthogonal vector axis alpha
   * @param[out] pIbeta   points to output two-phase orthogonal vector axis beta
   * @param[in]  sinVal   sine value of rotation angle theta
   * @param[in]  cosVal   cosine value of rotation angle theta
   * @return     none
   */
  __STATIC_FORCEINLINE void arm_inv_park_f32(
  float32_t Id,
  float32_t Iq,
  float32_t * pIalpha,
  float32_t * pIbeta,
  float32_t sinVal,
  float32_t cosVal)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

反park变换是将dq轴投影到 α \alpha α β \beta β轴,此处的sinValcosVal为转子角度的sin和cos值。

PID控制器:
CMSIS-DSP库中的PID控制器是增量式PID。
位置式PID就是直观地分别将P、I、D控制器的各自输出加起来:
u ( t ) = K p e ( t ) + K i ∑ i = 0 t ( e ( i ) ∗ Δ T ) + K d [ e ( t ) − e ( t − 1 ) ] Δ T u(t) = K_p e(t) + K_i \sum_{i=0}^{t} (e(i)*\Delta T) + K_d \frac{[e(t) - e(t-1)]} {\Delta T} u(t)=Kpe(t)+Kii=0t(e(i)ΔT)+KdΔT[e(t)e(t1)]
为了方便计算,这里将 Δ T \Delta T ΔT当作为1,在 K i K_i Ki K d K_d Kd系数上缩放回去就好了。
增量式PID理念是将PID的输出是上次PID输出的基础上加上之前两次的累计误差:
u ( t ) = u ( t − 1 ) + Δ u ( t ) u(t) =u(t-1) +\Delta u(t) u(t)=u(t1)+Δu(t)
Δ u ( t ) = u ( t ) − u ( t − 1 ) = K p e ( t ) + K i ∑ i = 0 t e ( i ) + K d [ e ( t ) − e ( t − 1 ) ] − ( K p e ( t − 1 ) + K i ∑ i = 0 t − 1 e ( i ) + K d [ e ( t − 1 ) − e ( t − 2 ) ] ) = K p [ e ( t ) − e ( t − 1 ) ] + K i e ( t ) + K d [ e ( t ) − 2 e ( t − 1 ) + e ( t − 2 ) ] = A 0 ⋅ e [ n ] + A 1 ⋅ e [ n − 1 ] + A 2 ⋅ e [ n − 2 ] 其中 { A 0 = K p + K i + K d A 1 = − K p − 2 K d A 2 = K d \Delta u(t) =u(t) -u(t-1)= K_p e(t) + K_i \sum_{i=0}^{t} e(i) + K_d [e(t) - e(t-1)]\\ -(K_p e(t-1) + K_i \sum_{i=0}^{t-1} e(i) + K_d [e(t-1) - e(t-2)])\\ = K_p [e(t) - e(t-1)] + K_i e(t) + K_d [e(t) - 2e(t-1) + e(t-2)]\\ = A_0⋅e[n]+A_1⋅e[n−1]+A_2⋅e[n−2]\\ 其中 {A0=Kp+Ki+KdA1=Kp2KdA2=Kd Δu(t)=u(t)u(t1)=Kpe(t)+Kii=0te(i)+Kd[e(t)e(t1)](Kpe(t1)+Kii=0t1e(i)+Kd[e(t1)e(t2)])=Kp[e(t)e(t1)]+Kie(t)+Kd[e(t)2e(t1)+e(t2)]=A0e[n]+A1e[n1]+A2e[n2]其中 A0=Kp+Ki+KdA1=Kp2KdA2=Kd
A 0 , A 1 , A 2 ,本次误差 e [ n ] ,上次误差 e [ n − 1 ] ,上上次误差 e [ n − 2 ] ,上一次的 P I D 输出 u ( t − 1 ) A_0,A_1,A_2,本次误差e[n],上次误差e[n-1],上上次误差e[n-2],上一次的PID输出u(t-1) A0A1A2,本次误差e[n],上次误差e[n1],上上次误差e[n2],上一次的PID输出u(t1)均为已知数,增量式PID的输出 u ( t ) u(t) u(t)也就能够计算出来了。
从增量式PID公式 Δ u ( t ) = K p [ e ( t ) − e ( t − 1 ) ] + K i e ( t ) + K d [ e ( t ) − 2 e ( t − 1 ) + e ( t − 2 ) ] \Delta u(t) = K_p [e(t) - e(t-1)] + K_i e(t) + K_d [e(t) - 2e(t-1) + e(t-2)] Δu(t)=Kp[e(t)e(t1)]+Kie(t)+Kd[e(t)2e(t1)+e(t2)]可以看出,当被控参数突然受到大的扰动时,不像位置式PID的P项 K p ∗ e ( t ) K_p*e(t) Kpe(t)会产生一个大的输出,增量式PID的 K p [ e ( t ) − e ( t − 1 ) ] K_p [e(t) - e(t-1)] Kp[e(t)e(t1)]输出是不大的,因此增量式PID对被控参数变化的输出比较平滑,不会突变,当然响应没有位置式PID快。
在代码上,首先需要创建一个PID控制器:

arm_pid_instance_f32 pid_position;
  • 1

然后设置PID控制器的PID参数:

pid_position.Kp = 1.2;
pid_position.Ki = 0.01;
pid_position.Kd = 2.1;
  • 1
  • 2
  • 3

然后调用函数初始化PID控制器:

/**
 * @brief  Initialization function for the floating-point PID Control.
 * @param[in,out] *S points to an instance of the PID structure.
 * @param[in]     resetStateFlag  flag to reset the state. 0 = no change in state & 1 = reset the state.
 * @return none.
 * \par Description:
 * \par
 * The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n
 * The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code>
 * using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd)
 * also sets the state variables to all zeros.
 */

void arm_pid_init_f32(
  arm_pid_instance_f32 * S,
  int32_t resetStateFlag)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

其中参数resetStateFlag为0时,会清空PID控制器内部保存的增量式数据: e [ n ] , e [ n − 1 ] , e [ n − 2 ] e[n],e[n-1],e[n-2] e[n],e[n1],e[n2]
一般初始化的用法是:

arm_pid_init_f32(&pid_position, false);
  • 1

此时就能够调用函数计算PID输出值了:

  /**
   * @brief         Process function for the floating-point PID Control.
   * @param[in,out] S   is an instance of the floating-point PID Control structure
   * @param[in]     in  input sample to process
   * @return        processed output sample.
   */
  __STATIC_FORCEINLINE float32_t arm_pid_f32(
  arm_pid_instance_f32 * S,
  float32_t in)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

其中参数S是PID控制器,参数in是被控参数的差值,返回PID控制器的输出值。


至此,所有准备工作就绪,我们了解了理论推导、FOC特定外设的配置和数学库的使用,接下来进入从零开始实现stm32无刷电机FOC工程代码讲解。
点击查看本文开源的完整FOC工程

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/天景科技苑/article/detail/893121
推荐阅读
相关标签
  

闽ICP备14008679号