当前位置:   article > 正文

15-二分查找(上):如何用最省内存的方式实现快速查找功能?_内存搜索数据结构

内存搜索数据结构

今天我们讲一种针对有序数据集合的查找算法:二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,很多非计算机专业的同学很容易就能理解,但是看似越简单的东西往往越难掌握好,想要灵活应用就更加困难。

老规矩,我们还是来看一道思考题。

假设我们有 1000 万个整数数据,每个数据占 8 个字节,如何设计数据结构和算法,快速判断某个整数是否出现在这 1000 万数据中? 我们希望这个功能不要占用太多的内存空间,最多不要超过 100MB,你会怎么做呢?带着这个问题,让我们进入今天的内容吧!

无处不在的二分思想
二分查找是一种非常简单易懂的快速查找算法,生活中到处可见。比如说,我们现在来做一个猜字游戏。我随机写一个 0 到 99 之间的数字,然后你来猜我写的是什么。猜的过程中,你每猜一次,我就会告诉你猜的大了还是小了,直到猜中为止。你来想想,如何快速猜中我写的数字呢?

假设我写的数字是 23,你可以按照下面的步骤来试一试。(如果猜测范围的数字有偶数个,中间数有两个,就选择较小的那个。)

在这里插入图片描述

7 次就猜出来了,是不是很快?这个例子用的就是二分思想,按照这个思想,即便我让你猜的是 0 到 999 的数字,最多也只要 10 次就能猜中。不信的话,你可以试一试。

这是一个生活中的例子,我们现在回到实际的开发场景中。假设有 1000 条订单数据,已经按照订单金额从小到大排序,每个订单金额都不同,并且最小单位是元。我们现在想知道是否存在金额等于 19 元的订单。如果存在,则返回订单数据,如果不存在则返回 null。

最简单的办法当然是从第一个订单开始,一个一个遍历这 1000 个订单,直到找到金额等于 19 元的订单为止。但这样查找会比较慢,最坏情况下,可能要遍历完这 1000 条记录才能找到。那用二分查找能不能更快速地解决呢?

为了方便讲解,我们假设只有 10 个订单,订单金额分别是:8,11,19,23,27,33,45,55,67,98。

还是利用二分思想,每次都与区间的中间数据比对大小,缩小查找区间的范围。为了更加直观,我画了一张查找过程的图。其中,low 和 high 表示待查找区间的下标,mid 表示待查找区间的中间元素下标。

在这里插入图片描述

看懂这两个例子,你现在对二分的思想应该掌握得妥妥的了。我这里稍微总结升华一下,二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。

O(logn) 惊人的查找速度
二分查找是一种非常高效的查找算法,高效到什么程度呢?我们来分析一下它的时间复杂度。

我们假设数据大小是 n,每次查找后数据都会缩小为原来的一半,也就是会除以 2。最坏情况下,直到查找区间被缩小为空,才停止。

可以看出来,这是一个等比数列。其中 n/2k=1 时,k 的值就是总共缩小的次数。而每一次缩小操作只涉及两个数据的大小比较,所以,经过了 k 次区间缩小操作,时间复杂度就是 O(k)。通过 n/2k=1,我们可以求得 k=log2n,所以时间复杂度就是 O(logn)。

二分查找是我们目前为止遇到的第一个时间复杂度为 O(logn) 的算法。后面章节我们还会讲堆、二叉树的操作等等,它们的时间复杂度也是 O(logn)。我这里就再深入地讲讲 O(logn) 这种对数时间复杂度。这是一种极其高效的时间复杂度,有的时候甚至比时间复杂度是常量级 O(1) 的算法还要高效。为什么这么说呢?

因为 logn 是一个非常“恐怖”的数量级,即便 n 非常非常大,对应的 logn 也很小。比如 n 等于 2 的 32 次方,这个数很大了吧?大约是 42 亿。也就是说,如果我们在 42 亿个数据中用二分查找一个数据,最多需要比较 32 次。

我们前面讲过,用大 O 标记法表示时间复杂度的时候,会省略掉常数、系数和低阶。对于常量级时间复杂度的算法来说,O(1) 有可能表示的是一个非常大的常量值,比如 O(1000)、O(10000)。所以,常量级时间复杂度的算法有时候可能还没有 O(logn) 的算法执行效率高。

反过来,对数对应的就是指数。有一个非常著名的“阿基米德与国王下棋的故事”,你可以自行搜索一下,感受一下指数的“恐怖”。这也是为什么我们说,指数时间复杂度的算法在大规模数据面前是无效的。

二分查找的递归与非递归实现
实际上,简单的二分查找并不难写,注意我这里的“简单”二字。下一节,我们会讲到二分查找的变体问题,那才是真正烧脑的。今天,我们来看如何来写最简单的二分查找。

最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。我用 Java 代码实现了一个最简单的二分查找算法。

public int bsearch(int[] a, int n, int value) {
  int low = 0;
  int high = n - 1;
 
  while (low <= high) {
    int mid = (low + high) / 2;
    if (a[mid] == value) {
      return mid;
    } else if (a[mid] < value) {
      low = mid + 1;
    } else {
      high = mid - 1;
    }
  }
 
  return -1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

这个代码我稍微解释一下,low、high、mid 都是指数组下标,其中 low 和 high 表示当前查找的区间范围,初始 low=0, high=n-1。mid 表示 [low, high] 的中间位置。我们通过对比 a[mid] 与 value 的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为 0,就退出。如果你有一些编程基础,看懂这些应该不成问题。现在,我就着重强调一下容易出错的 3 个地方。

  1. 循环退出条件
    注意是 low<=high,而不是 low<high。

2.mid 的取值
实际上,mid=(low+high)/2 这种写法是有问题的。因为如果 low 和 high 比较大的话,两者之和就有可能会溢出。改进的方法是将 mid 的计算方式写成 low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以 2 操作转化成位运算 low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。

3.low 和 high 的更新
low=mid+1,high=mid-1。注意这里的 +1 和 -1,如果直接写成 low=mid 或者 high=mid,就可能会发生死循环。比如,当 high=3,low=3 时,如果 a[3] 不等于 value,就会导致一直循环不退出。

如果你留意我刚讲的这三点,我想一个简单的二分查找你已经可以实现了。实际上,二分查找除了用循环来实现,还可以用递归来实现,过程也非常简单。

我用 Java 语言实现了一下这个过程,正好你可以借此机会回顾一下写递归代码的技巧。

// 二分查找的递归实现
public int bsearch(int[] a, int n, int val) {
  return bsearchInternally(a, 0, n - 1, val);
}
 
private int bsearchInternally(int[] a, int low, int high, int value) {
  if (low > high) return -1;
 
  int mid =  low + ((high - low) >> 1);
  if (a[mid] == value) {
    return mid;
  } else if (a[mid] < value) {
    return bsearchInternally(a, mid+1, high, value);
  } else {
    return bsearchInternally(a, low, mid-1, value);
  }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

二分查找应用场景的局限性
前面我们分析过,二分查找的时间复杂度是 O(logn),查找数据的效率非常高。不过,并不是什么情况下都可以用二分查找,它的应用场景是有很大局限性的。那什么情况下适合用二分查找,什么情况下不适合呢?

首先,二分查找依赖的是顺序表结构,简单点说就是数组。

那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是 O(1),而链表随机访问的时间复杂度是 O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。

二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。

其次,二分查找针对的是有序数据。

二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。

但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。

所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。那针对动态数据集合,如何在其中快速查找某个数据呢?别急,等到二叉树那一节我会详细讲。

再次,数据量太小不适合二分查找。

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多。只有数据量比较大的时候,二分查找的优势才会比较明显。

不过,这里有一个例外。如果数据之间的比较操作非常耗时,不管数据量大小,我都推荐使用二分查找。比如,数组中存储的都是长度超过 300 的字符串,如此长的两个字符串之间比对大小,就会非常耗时。我们需要尽可能地减少比较次数,而比较次数的减少会大大提高性能,这个时候二分查找就比顺序遍历更有优势。

最后,数据量太大也不适合二分查找。

二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。比如,我们有 1GB 大小的数据,如果希望用数组来存储,那就需要 1GB 的连续内存空间。

注意这里的“连续”二字,也就是说,即便有 2GB 的内存空间剩余,但是如果这剩余的 2GB 内存空间都是零散的,没有连续的 1GB 大小的内存空间,那照样无法申请一个 1GB 大小的数组。而我们的二分查找是作用在数组这种数据结构之上的,所以太大的数据用数组存储就比较吃力了,也就不能用二分查找了。

解答开篇
二分查找的理论知识你应该已经掌握了。我们来看下开篇的思考题:如何在 1000 万个整数中快速查找某个整数?

这个问题并不难。我们的内存限制是 100MB,每个数据大小是 8 字节,最简单的办法就是将数据存储在数组中,内存占用差不多是 80MB,符合内存的限制。借助今天讲的内容,我们可以先对这 1000 万数据从小到大排序,然后再利用二分查找算法,就可以快速地查找想要的数据了。

看起来这个问题并不难,很轻松就能解决。实际上,它暗藏了“玄机”。如果你对数据结构和算法有一定了解,知道散列表、二叉树这些支持快速查找的动态数据结构。你可能会觉得,用散列表和二叉树也可以解决这个问题。实际上是不行的。

虽然大部分情况下,用二分查找可以解决的问题,用散列表、二叉树都可以解决。但是,我们后面会讲,不管是散列表还是二叉树,都会需要比较多的额外的内存空间。如果用散列表或者二叉树来存储这 1000 万的数据,用 100MB 的内存肯定是存不下的。而二分查找底层依赖的是数组,除了数据本身之外,不需要额外存储其他信息,是最省内存空间的存储方式,所以刚好能在限定的内存大小下解决这个问题。

内容小结
今天我们学习了一种针对有序数据的高效查找算法,二分查找,它的时间复杂度是 O(logn)。

二分查找的核心思想理解起来非常简单,有点类似分治思想。即每次都通过跟区间中的中间元素对比,将待查找的区间缩小为一半,直到找到要查找的元素,或者区间被缩小为 0。但是二分查找的代码实现比较容易写错。你需要着重掌握它的三个容易出错的地方:循环退出条件、mid 的取值,low 和 high 的更新。

二分查找虽然性能比较优秀,但应用场景也比较有限。底层必须依赖数组,并且还要求数据是有序的。对于较小规模的数据查找,我们直接使用顺序遍历就可以了,二分查找的优势并不明显。二分查找更适合处理静态数据,也就是没有频繁的数据插入、删除操作。

课后思考?

如何编程实现“求一个数的平方根”?要求精确到小数点后 6 位。

我刚才说了,如果数据使用链表存储,二分查找的时间复杂就会变得很高,那查找的时间复杂度究竟是多少呢?如果你自己推导一下,你就会深刻地认识到,为何我们会选择用数组而不是链表来实现二分查找了

解答:

求平方根,可以参考0到99之间猜数字的思路,99换成x, 循环到误差允许内即可,注意1这个分界线。Java如下

public static double sqrt(double x, double precision) {
if (x < 0) {
return Double.NaN;
}
double low = 0;
double up = x;
if (x < 1 && x > 0) {
/** 小于1的时候*/
low = x;
up = 1;
}
double mid = low + (up - low)/2;
while(up - low > precision) {
if (mid * mid > x ) {//TODO mid可能会溢出
up = mid;
} else if (mid * mid < x) {
low = mid;
} else {
return mid;
}
mid = low + (up - low)/2;
}
return mid;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小丑西瓜9/article/detail/542909
推荐阅读
相关标签
  

闽ICP备14008679号