赞
踩
目录:
1、文本表示哪些方法?
2、怎么从语言模型理解词向量?怎么理解分布式假设?
3、传统的词向量有什么问题?怎么解决?各种词向量的特点是什么?
4、word2vec和NNLM对比有什么区别?(word2vec vs NNLM)
5、word2vec和fastText对比有什么区别?(word2vec vs fastText)
6、glove和word2vec、 LSA对比有什么区别?(word2vec vs glove vs LSA)
7、 elmo、GPT、bert三者之间有什么区别?(elmo vs GPT vs bert)
1、文本表示哪些方法?
下面对文本表示进行一个归纳,也就是对于一篇文本可以如何用数学语言表示呢?
2、怎么从语言模型理解词向量?怎么理解分布式假设?
上面给出的4个类型也是nlp领域最为常用的文本表示了,文本是由每个单词构成的,而谈起词向量,one-hot是可认为是最为简单的词向量,但存在维度灾难和语义鸿沟等问题;通过构建共现矩阵并利用SVD求解构建词向量,则计算复杂度高;而早期词向量的研究通常来源于语言模型,比如NNLM和RNNLM,其主要目的是语言模型,而词向量只是一个副产物。
NNLM
所谓分布式假设,用一句话可以表达:相同上下文语境的词有似含义。而由此引申出了word2vec、fastText,在此类词向量中,虽然其本质仍然是语言模型,但是它的目标并不是语言模型本身,而是词向量,其所作的一系列优化,都是为了更快更好的得到词向量。glove则是基于全局语料库、并结合上下文语境构建词向量,结合了LSA和word2vec的优点。
3、传统的词向量有什么问题?怎么解决?各种词向量的特点是什么?
上述方法得到的词向量是固定表征的,无法解决一词多义等问题,如“川普”。为此引入基于语言模型的动态表征方法:elmo、GPT、bert。
各种词向量的特点:
(1)One-hot 表示 :维度灾难、语义鸿沟;
(2)分布式表示 (distributed representation) :
4、word2vec和NNLM对比有什么区别?(word2vec vs NNLM)
1)其本质都可以看作是语言模型;
2)词向量只不过NNLM一个产物,word2vec虽然其本质也是语言模型,但是其专注于词向量本身,因此做了许多优化来提高计算效率:
5、word2vec和fastText对比有什么区别?(word2vec vs fastText)
1)都可以无监督学习词向量, fastText训练词向量时会考虑subword;
2) fastText还可以进行有监督学习进行文本分类,其主要特点:
6、glove和word2vec、 LSA对比有什么区别?(word2vec vs glove vs LSA)
1)glove vs LSA
2)word2vec vs glove
elmo vs GPT vs bert
7、 elmo、GPT、bert三者之间有什么区别?(elmo vs GPT vs bert)
之前介绍词向量均是静态的词向量,无法解决一次多义等问题。下面介绍三种elmo、GPT、bert词向量,它们都是基于语言模型的动态词向量。下面从几个方面对这三者进行对比:
(1)特征提取器:elmo采用LSTM进行提取,GPT和bert则采用Transformer进行提取。很多任务表明Transformer特征提取能力强于LSTM,elmo采用1层静态向量+2层LSTM,多层提取能力有限,而GPT和bert中的Transformer可采用多层,并行计算能力强。
(2)单/双向语言模型:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。