当前位置:   article > 正文

LLM漫谈(二)| QAnything支持任意格式文件或数据库的本地知识库问答系统_qanything 格式解析

qanything 格式解析

一、QAnything介绍

        QAnything (Question and Answer based on Anything) 是致力于支持任意格式文件或数据库的本地知识库问答系统,可断网安装使用。

        您的任何格式的本地文件都可以往里扔,即可获得准确、快速、靠谱的问答体验。

         目前已支持格式: PDF,Word(doc/docx),PPT,Markdown,Eml,TXT,图片(jpg,png等),网页链接,更多格式,敬请期待...

二、特点

  • 数据安全,支持全程拔网线安装使用。

  • 支持跨语种问答,中英文问答随意切换,无所谓文件是什么语种。

  • 支持海量数据问答,两阶段向量排序,解决了大规模数据检索退化的问题,数据越多,效果越好。

  • 高性能生产级系统,可直接部署企业应用。

  • 易用性,无需繁琐的配置,一键安装部署,拿来就用。

  • 支持选择多知识库问答。

三、架构

3.1 为什么是两阶段检索?

       知识库数据量大的场景下两阶段优势非常明显,如果只用一阶段embedding检索,随着数据量增大会出现检索退化的问题,如下图中绿线所示,二阶段rerank重排后能实现准确率稳定增长,即数据越多,效果越好。

        QAnything使用的检索组件BCEmbedding(https://github.com/netease-youdao/BCEmbedding)有非常强悍的双语和跨语种能力,能消除语义检索里面的中英语言之间的差异,从而实现:

  • 强大的双语和跨语种语义表征能力【基于MTEB的语义表征评测指标】。

  • 基于LlamaIndex的RAG评测,表现SOTA【基于LlamaIndex的RAG评测指标】。

一阶段检索(embedding)

模型名称RetrievalSTSPairClassificationClassificationRerankingClustering平均
bge-base-en-v1.537.1455.0675.4559.7343.0537.7447.20
bge-base-zh-v1.547.6063.7277.4063.3854.8532.5653.60
bge-large-en-v1.537.1554.0975.0059.2442.6837.3246.82
bge-large-zh-v1.547.5464.7379.1464.1955.8833.2654.21
jina-embeddings-v2-base-en31.5854.2874.8458.4241.1634.6744.29
m3e-base46.2963.9371.8464.0852.3837.8453.54
m3e-large34.8559.7467.6960.0748.9931.6246.78
bce-embedding-base_v157.6065.7374.9669.0057.2938.9559.43
  • 更详细的评测结果详见Embedding模型指标汇总(https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/embedding_eval_summary.md)。

二阶段检索(rerank)

模型名称Reranking平均
bge-reranker-base57.7857.78
bge-reranker-large59.6959.69
bce-reranker-base_v160.0660.06
  • 更详细的评测结果详见Reranker模型指标汇总(https://github.com/netease-youdao/BCEmbedding/blob/master/Docs/EvaluationSummary/reranker_eval_summary.md)

3.2 基于LlamaIndex的RAG评测(embedding and rerank)

NOTE:

  • 在WithoutReranker列中,我们的bce-embedding-base_v1模型优于所有其他embedding模型。

  • 在固定embedding模型的情况下,我们的bce-reranker-base_v1模型达到了最佳表现。

  • bce-embedding-base_v1和bce-reranker-base_v1的组合是SOTA。

  • 如果想单独使用embedding和rerank请参阅:BCEmbedding

3.3 LLM

        开源版本QAnything的大模型基于通义千问,并在大量专业问答数据集上进行微调;在千问的基础上大大加强了问答的能力。如果需要商用请遵循千问的license,具体请参阅:通义千问(https://github.com/QwenLM/Qwen)

四、开始

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/繁依Fanyi0/article/detail/495218
推荐阅读
相关标签