当前位置:   article > 正文

NLP(四十四)使用keras-bert加载BERT模型的两种方法_keras bert当作一层输入

keras bert当作一层输入

  keras-bertKeras框架加载BERT模型的Python第三方模块,在之前的文章中,笔者介绍了如何使用keras-bret来实现不同的NLP任务,比如:

  本文将介绍两种使用keras-bert加载BERT模型的方法。使用的Python环境如下:

python==3.7.0
tensorflow==1.14.0
Keras==2.2.4
keras-bert==0.83.0
  • 1
  • 2
  • 3
  • 4

加载的模型为Google官方发布的BERT中文预训练模型。创建的模型为BERT+Bi-LSTM+CRF,其中对BERT进行微调。

方法1

  方法1的完整代码如下:

# -*- coding: utf-8 -*-
from keras.layers import *
from keras.models import Model
from keras.utils import plot_model
from keras_bert import load_trained_model_from_checkpoint
from keras_contrib.layers import CRF


# 创建BERT-BiLSTM-CRF模型
model_path = "./chinese_L-12_H-768_A-12/"
bert = load_trained_model_from_checkpoint(
    model_path + "bert_config.json",
    model_path + "bert_model.ckpt",
    seq_len=128
)
# make bert layer trainable
for layer in bert.layers:
    layer.trainable = True

x1 = Input(shape=(None,))
x2 = Input(shape=(None,))
bert_out = bert([x1, x2])
lstm_out = Bidirectional(LSTM(64,
                              return_sequences=True,
                              dropout=0.2,
                              recurrent_dropout=0.2))(bert_out)
crf_out = CRF(8, sparse_target=True)(lstm_out)
model = Model([x1, x2], crf_out)
model.summary()
plot_model(model, to_file="model.png")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

输出的模型结构如下:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, None)         0                                            
__________________________________________________________________________________________________
input_2 (InputLayer)            (None, None)         0                                            
__________________________________________________________________________________________________
model_2 (Model)                 multiple             101382144   input_1[0][0]                    
                                                                 input_2[0][0]                    
__________________________________________________________________________________________________
bidirectional_1 (Bidirectional) (None, None, 128)    426496      model_2[1][0]                    
__________________________________________________________________________________________________
crf_1 (CRF)                     (None, None, 8)      1112        bidirectional_1[0][0]            
==================================================================================================
Total params: 101,809,752
Trainable params: 101,809,752
Non-trainable params: 0
__________________________________________________________________________________________________
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18

模型结构示意图
可以看到,该方法加载BERT,会把BERT模型整体当做一个输出形状为multiple的层,我们无法得知BERT模型的具体层信息,好处是我们的模型结构会显得比较简单(略去了BERT的细节)。

方法2

  方法2加载BERT模型的Python代码如下:

# -*- coding: utf-8 -*-
from keras.layers import *
from keras.models import Model
from keras.utils import plot_model
from keras_bert import load_trained_model_from_checkpoint
from keras_contrib.layers import CRF


# 创建BERT-BiLSTM-CRF模型
model_path = "./chinese_L-12_H-768_A-12/"
bert = load_trained_model_from_checkpoint(
    model_path + "bert_config.json",
    model_path + "bert_model.ckpt",
    seq_len=128
)
# make bert layer trainable
for layer in bert.layers:
    layer.trainable = True

lstm_out = Bidirectional(LSTM(64,
                              return_sequences=True,
                              dropout=0.2,
                              recurrent_dropout=0.2))(bert.output)
crf_out = CRF(8, sparse_target=True)(lstm_out)
model = Model(bert.input, crf_out)
model.summary()
plot_model(model, to_file="model.png")
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27

输出的模型结构如下:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
Input-Token (InputLayer)        (None, 128)          0                                            
__________________________________________________________________________________________________
Input-Segment (InputLayer)      (None, 128)          0                                            
__________________________________________________________________________________________________
Embedding-Token (TokenEmbedding [(None, 128, 768), ( 16226304    Input-Token[0][0]                
__________________________________________________________________________________________________
Embedding-Segment (Embedding)   (None, 128, 768)     1536        Input-Segment[0][0]              
__________________________________________________________________________________________________
Embedding-Token-Segment (Add)   (None, 128, 768)     0           Embedding-Token[0][0]            
                                                                 Embedding-Segment[0][0]          
__________________________________________________________________________________________________
Embedding-Position (PositionEmb (None, 128, 768)     98304       Embedding-Token-Segment[0][0]    
__________________________________________________________________________________________________
Embedding-Dropout (Dropout)     (None, 128, 768)     0           Embedding-Position[0][0]         
__________________________________________________________________________________________________
Embedding-Norm (LayerNormalizat (None, 128, 768)     1536        Embedding-Dropout[0][0]          
__________________________________________________________________________________________________
Encoder-1-MultiHeadSelfAttentio (None, 128, 768)     2362368     Embedding-Norm[0][0]             
__________________________________________________________________________________________________
Encoder-1-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-1-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-1-MultiHeadSelfAttentio (None, 128, 768)     0           Embedding-Norm[0][0]             
                                                                 Encoder-1-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-1-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-1-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-1-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-1-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-1-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-1-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-1-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-1-MultiHeadSelfAttention-
                                                                 Encoder-1-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-1-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-1-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-2-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-1-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-2-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-2-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-2-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-1-FeedForward-Norm[0][0] 
                                                                 Encoder-2-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-2-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-2-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-2-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-2-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-2-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-2-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-2-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-2-MultiHeadSelfAttention-
                                                                 Encoder-2-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-2-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-2-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-3-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-2-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-3-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-3-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-3-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-2-FeedForward-Norm[0][0] 
                                                                 Encoder-3-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-3-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-3-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-3-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-3-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-3-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-3-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-3-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-3-MultiHeadSelfAttention-
                                                                 Encoder-3-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-3-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-3-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-4-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-3-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-4-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-4-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-4-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-3-FeedForward-Norm[0][0] 
                                                                 Encoder-4-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-4-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-4-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-4-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-4-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-4-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-4-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-4-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-4-MultiHeadSelfAttention-
                                                                 Encoder-4-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-4-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-4-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-5-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-4-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-5-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-5-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-5-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-4-FeedForward-Norm[0][0] 
                                                                 Encoder-5-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-5-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-5-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-5-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-5-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-5-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-5-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-5-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-5-MultiHeadSelfAttention-
                                                                 Encoder-5-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-5-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-5-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-6-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-5-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-6-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-6-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-6-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-5-FeedForward-Norm[0][0] 
                                                                 Encoder-6-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-6-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-6-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-6-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-6-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-6-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-6-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-6-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-6-MultiHeadSelfAttention-
                                                                 Encoder-6-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-6-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-6-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-7-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-6-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-7-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-7-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-7-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-6-FeedForward-Norm[0][0] 
                                                                 Encoder-7-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-7-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-7-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-7-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-7-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-7-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-7-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-7-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-7-MultiHeadSelfAttention-
                                                                 Encoder-7-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-7-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-7-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-8-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-7-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-8-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-8-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-8-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-7-FeedForward-Norm[0][0] 
                                                                 Encoder-8-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-8-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-8-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-8-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-8-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-8-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-8-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-8-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-8-MultiHeadSelfAttention-
                                                                 Encoder-8-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-8-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-8-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-9-MultiHeadSelfAttentio (None, 128, 768)     2362368     Encoder-8-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-9-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-9-MultiHeadSelfAttention[
__________________________________________________________________________________________________
Encoder-9-MultiHeadSelfAttentio (None, 128, 768)     0           Encoder-8-FeedForward-Norm[0][0] 
                                                                 Encoder-9-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-9-MultiHeadSelfAttentio (None, 128, 768)     1536        Encoder-9-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-9-FeedForward (FeedForw (None, 128, 768)     4722432     Encoder-9-MultiHeadSelfAttention-
__________________________________________________________________________________________________
Encoder-9-FeedForward-Dropout ( (None, 128, 768)     0           Encoder-9-FeedForward[0][0]      
__________________________________________________________________________________________________
Encoder-9-FeedForward-Add (Add) (None, 128, 768)     0           Encoder-9-MultiHeadSelfAttention-
                                                                 Encoder-9-FeedForward-Dropout[0][
__________________________________________________________________________________________________
Encoder-9-FeedForward-Norm (Lay (None, 128, 768)     1536        Encoder-9-FeedForward-Add[0][0]  
__________________________________________________________________________________________________
Encoder-10-MultiHeadSelfAttenti (None, 128, 768)     2362368     Encoder-9-FeedForward-Norm[0][0] 
__________________________________________________________________________________________________
Encoder-10-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-10-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-10-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-9-FeedForward-Norm[0][0] 
                                                                 Encoder-10-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-10-MultiHeadSelfAttenti (None, 128, 768)     1536        Encoder-10-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-10-FeedForward (FeedFor (None, 128, 768)     4722432     Encoder-10-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-10-FeedForward-Dropout  (None, 128, 768)     0           Encoder-10-FeedForward[0][0]     
__________________________________________________________________________________________________
Encoder-10-FeedForward-Add (Add (None, 128, 768)     0           Encoder-10-MultiHeadSelfAttention
                                                                 Encoder-10-FeedForward-Dropout[0]
__________________________________________________________________________________________________
Encoder-10-FeedForward-Norm (La (None, 128, 768)     1536        Encoder-10-FeedForward-Add[0][0] 
__________________________________________________________________________________________________
Encoder-11-MultiHeadSelfAttenti (None, 128, 768)     2362368     Encoder-10-FeedForward-Norm[0][0]
__________________________________________________________________________________________________
Encoder-11-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-11-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-11-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-10-FeedForward-Norm[0][0]
                                                                 Encoder-11-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-11-MultiHeadSelfAttenti (None, 128, 768)     1536        Encoder-11-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-11-FeedForward (FeedFor (None, 128, 768)     4722432     Encoder-11-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-11-FeedForward-Dropout  (None, 128, 768)     0           Encoder-11-FeedForward[0][0]     
__________________________________________________________________________________________________
Encoder-11-FeedForward-Add (Add (None, 128, 768)     0           Encoder-11-MultiHeadSelfAttention
                                                                 Encoder-11-FeedForward-Dropout[0]
__________________________________________________________________________________________________
Encoder-11-FeedForward-Norm (La (None, 128, 768)     1536        Encoder-11-FeedForward-Add[0][0] 
__________________________________________________________________________________________________
Encoder-12-MultiHeadSelfAttenti (None, 128, 768)     2362368     Encoder-11-FeedForward-Norm[0][0]
__________________________________________________________________________________________________
Encoder-12-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-12-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-12-MultiHeadSelfAttenti (None, 128, 768)     0           Encoder-11-FeedForward-Norm[0][0]
                                                                 Encoder-12-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-12-MultiHeadSelfAttenti (None, 128, 768)     1536        Encoder-12-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-12-FeedForward (FeedFor (None, 128, 768)     4722432     Encoder-12-MultiHeadSelfAttention
__________________________________________________________________________________________________
Encoder-12-FeedForward-Dropout  (None, 128, 768)     0           Encoder-12-FeedForward[0][0]     
__________________________________________________________________________________________________
Encoder-12-FeedForward-Add (Add (None, 128, 768)     0           Encoder-12-MultiHeadSelfAttention
                                                                 Encoder-12-FeedForward-Dropout[0]
__________________________________________________________________________________________________
Encoder-12-FeedForward-Norm (La (None, 128, 768)     1536        Encoder-12-FeedForward-Add[0][0] 
__________________________________________________________________________________________________
bidirectional_1 (Bidirectional) (None, 128, 128)     426496      Encoder-12-FeedForward-Norm[0][0]
__________________________________________________________________________________________________
crf_1 (CRF)                     (None, 128, 8)       1112        bidirectional_1[0][0]            
==================================================================================================
Total params: 101,809,752
Trainable params: 101,809,752
Non-trainable params: 0
__________________________________________________________________________________________________
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244

模型结构示意图
可以看到,该方法加载BERT模型,可以完整地看到BERT具体层信息,而不是把BERT模型当成一个层来看,更像是BERT finetune的感觉。

总结

  本文较为简单,介绍了两种使用keras-bert加载BERT模型的方法。之所以笔者在此介绍这些加载方法,是为了后续方便使用对抗训练FGM来增加模型效果,FGM对抗训练需要我们对Embedding层做扰动。
  本文到此结束,感谢大家的阅读~
  2021年3月31日于上海浦东~

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/花生_TL007/article/detail/639805
推荐阅读
相关标签
  

闽ICP备14008679号